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o INTRODUCTION AND BACKGROUND e
KON nt

d Lt
:f 1.1 INTRODUCTION :rw
-1 ’

e ¢

N (AR
h The Advanced Architectures for Signal Processors project B

continues to apply residue number system (RNS) techniques to the

W ‘N
,':: practical design of advanced digital signal processors. We are ;;:::i
o . . . : e
;.f: developing algorithms, computational techniques, and systolic archi- i‘sja:;'
A '.‘f,
) tectures to be implemented in custom-design, very large scale inte- }?tz“;ﬁ

grated (VLSI) electronics.

'.:.' In conjunction with MITRE's Integrated Electronics and Mathema- ,v‘:"‘
(} N
by tical Research projects, we have been exploring opportunities for ':!:,;t

improved implementation of digital signal processing functions

':g‘ fostered by VLSI hardware design combining RNS computation with :q,’::f
;g, systolic architectures, i.e., arrays of identical pipelined pro- s&&
', cessors using nearest-neighbor communication. :;:,'M
E:i 1.2 BACKGROUND :E""
) -
:;,‘ In FY84 and continuing into FY85, we explored the use of RNS :

. for implementing the computationally intensive processing functions -.,—.
-; associated with speech recognition. Algorithms for word recognition '-'.
"E require three essential processes: (1) generation of a test pattern, :_,:
"o or spectrogram, to efficiently describe an utterance; (2) computa- 3
_ tion of a measure of the distortion between segments of spoken and
ii; referenced utterances; and (3) dynamic programming to effect regis- t
fﬁ'. tration between utterances that differ hecause of local time expan- "'-('“
! n sions and contractions, i.e., dynamic time-warping (DTW). s',. .-'

n . L% M W)
s u: t‘. '-‘. z‘g.c"a, t: |:a'\: " ' "!:"l.“r .” ‘} W ng
‘Ht .‘\ 'o‘a' i c 3 u.,.

A0 0
"'.ft‘)‘ " 0‘ ,"?' A “"w ‘\- N }‘
n.; ‘q‘,,a K ¢ g W

sty “ O ' DO ;.' ool ‘.' “'t"' g “c‘"c . u“'b"'"o"'t A,
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These processing functions can impose an enormous burden for a
processor employing a large reference vocabulary (several hundred
words). If performed sequentially, conventional signal processing
cannot achieve real-time operation for normal speaking rates of a
few words per second. The combination of RNS and systolic archi-
tectures can reduce the otherwise large hardware complexity and
increase the throughput sufficiently enough to achieve real-time

recognition rates,

Residue number systems are well suited for implementing linear
processes composed of multiplication and addition in low-complexity
hardware, especially when the computational result can be confined
to a small range. On the.other hand, RNS is usually unsuitable for
nonlinear operations, and division or magnitude comparison generally

requires reconversion to a weighted number system.

In speech recognition, the distortion computations, largely
multiply-and-accumulate operations dependent on the chosen measure,
must be performed for every compared pair of test and reference
segments. RNS is useful for this situation. The dynamic program-
ming step, however, requires local magnitude comparisons for the
accumulated distortion of a (conceptual) least-distortion. path
traversing an array of distortion values that compare different time
segments of a test and reference utterance pair. Magnitude compari-
sons are awkward for RNS, but if the cumulative local path differ-
ences are small enough they can be contained within the range of a
single modulus. The entire RNS is used to accumulate the total path
cost for comparison with path costs of other utterance pairs,
Occasional local overflow of the chosen modulus probably does not

harm the path-cost computation.
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}k Confining the distortion computation's dynamic range is neces- ﬁgﬁ
i? sary to successfully employ RNS for DTW. Because an RNS needs no ,gg
- allowance for local overflow of summed products, it has a dynamic th;
}: range advantage over conventional multiply-and-accumulate 3“
Q&; computation representations. However, the gross dynamic range of \qf3
E;’ the distortion computation must be confined to maintain realistic Eﬁg
! hardware complexity for parallel, pipelined operation in a few VLSI .
" circuits. i??
3 &5
ﬁé 1.2.1 Previous Results ﬁ‘ﬂ
it "
K? In FY84, we found RNS techniques effective for computations -l%
{%, used in word recognition processors. Using computer simulation, we hy ;:
%J developed a design model for a word recognition system employing :ﬁ:
W autocorrelation analysis of segmented speech to calculate linear W
%2 predictive coding (LPC) distortion-value inputs to a dynamic- abi
&a programming algorithm for nonlinear time-warping. We identified gsg
4 . . . .
ék systolic architectures for the key processing steps. Incorporating ?ki
2 distortion computations with path-metric computations in.a pipelined rh

two-dimensional systolic array provided a high throughput for the

most computationally intensive part of the recognition algorithm.

",
™ The results were documented in an earlier project report [1]. ,?g
"?‘.E‘ "t“'
. While we were convinced by our results that RNS implementation i%i
b : : s N [y y
ﬁ&‘ had high potential for speech recognition, we were also convinced . ~§
A ‘ b
Ted . . . ;
_34 that substantial reduction of the gross dynamic range of the distor- nyf
‘pr. h I
- tion computations (without sacrificing discrimination ability) would .
o be required before RNS implementation could be accepted as a practi- o
1 "2
;éé cal alternative to conventional architectures. This mandated a .3:
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-e..ssesssent of the distortion function supporting the DTW computa-
r.ons. A particularly perplexing fact was that the path-metric
computations could be successfully carried out with coarse quantiza-
tion of the distortion values while computing our RNS implementation
of the LPC distortion metric required a much larger range, even

though RNS reduced the range requirement somewhat.

1.2.2 Distortion Function Alternatives

Pram our point of view, not only must the distortion measure
produce satisfactory discrimination in a narrow range of values, it
also must be suitable for RNS computations. For speech recognition,
the purpose of the spectral analysis and distortion computation is
to distill the information contained in the speech waveform into a
small set of data suitable for low-error discrimination between
distinct word patterns, and not necessarily to preserve information
needed for high-grade speech synthesis. Thus, the LPC methods could
be unnecessarily stringent for speech recognition, while admittedly
weak in the presence of noise, and at the same time could impose the

need for high-precision, i.e., large dynamic-range, computations.

Contemporary speech research rejects traditional squared Eucli-
dean distance or equivalently mean-squared error as a distortion
measure on the grounds that it is not sufficiently meaningful to
represent what are considered requirements of auditory perception.

The ear needs only to recognize the random process producing a wave-

form to within some deqree of accuracy and does not need to have an

o accurate reproduction of the specific waveform. Demanding a small
Aoyl
:{qg mean-squared error in a speech system requires more bits and
e . e
«ﬁp accuracy than the human ear requires for intelligible speech.
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" The success of LPC methods can be attributed to the correspond- "ﬁﬁf
W . . . . byt
o ing distortion measures (such as maximum likelihood) that assess, in .:%ﬂ
N foy %0
o a probabilistic sense, the similarity between original and repro- —
¢ duced processes or models rather than the actual waveforms. In our égg?
!‘:\ . 0! :
o previous work, we accepted this rationale, ’Ex}
a" & L'
i R
& ’2‘:;
Mean-squared error, however, cannot be rejected on the grounds -

. that it is too forgiving. We realized that if we were to base our e,
N . .‘.“. N
t? analysis on power spectra or on autocorrelation analysis, then ;}Qq
) ; . . . - i
:4 Euclidean distance would still be useful to discriminate spectral ?ﬁﬂﬁ
[ OO
by patterns for automatic word recognition. For RNS implementation, we At
" preferred squared Euclidean distance, because it avoids explicit A
! e\ .
¢< sign detection that would require exiting RNS. : é§
5 3 '.‘o
ty A
" e
o The square-law behavior of the distortion function at first OO
‘ seemed an obstacle to reducing the dynamic range, but we realized we Q§§$
+ (Y
:; could quantize the distortion values to just a few levels and still %&é}
i A
:& maintain a good discrimination ability. This suggested that we d§ﬁ
\' 4 N}
A could scale down the input values to keep within a practical range. 'kﬂﬂ
" We considered two methods of using squared Euclidean distance for
§ . . . C s .

} RNS distortion computation, log spectral deviation and direct auto-
. l‘

correlation analysis.

T Log Spectral Deviation ; N
f;‘ )
: X
& One of the oldest distortion measures proposed for speech is -~ :r
g Rt
the Ly norm of the difference of the logarithms of the power oAl
X spectra. Assuming the spectral envelopes have been sampled and DTk
’ . '-f:.
.g scaled logarithmically, the L; norm is simply the square root of the z’{;
W LN
Q~ squared Euclidean distance between the vectors of logarithmic : )
:“l < !
£ spectral samples. One of the traditional ways to provide the FJE%
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3%= spectral envelopes is through a bank of constant-Q filters appro-
‘“uv priately spaced across the speech spectrum. The output of each

‘I' 2 . . ) :
e filter's power is sampled in time and scaled logarithmically.

e Such a filter bank probably is best implemented with analog-

R sampled, switched-capacitor active filters rather than with digital

e filters. Thus, we did not consider using RNS for the filter bank
but would convert the log-spectral samples to RNS code for computa-

tion of the squared Euclidean distortion in a systolic array.

%
i#: Another means considered for performing the filter-bank analy-
e sis was to take a discrete Fourier transform (DFT) of the windowed
. speech samples with a moderately high resolution (perhaps 256 to
%&3 1024 samples per frame), subdivide the samples into appropriate
Wi bands, compute the power in each subband, and convert to logarithmic
gﬁ. form. With the exception of logarithmic conversion, all of the
jt‘ processing could be carried out with RNS.
Al Logarithmic conversion requires reconversion to a weighted
e number system (probably needed anvway for spectral normalization)
ﬁ? followed by reconversion to RNS for the distortion computation.
gh' These processing steps are more complicated than the computation of
‘é. the autocorrelation samples in the already-developed linear systolic
— array architecture. The operations, however, are performed only
%}f once for each test segment.
25
AN, Direct Correlation Analysis
yre
¢%j Alternatively, the autocorrelation coefficients of the windowed
.ag speech samples could be transformed by a DFT to provide a represen-
A tation of the spectral envelope. We thought, however, that it might
i
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be better to use the coefficients directly for spectral discrimina-

tion. While LPC analysis approximates the spectral envelope as

represented by the all-pole linear filter model, it is essentially a

linear transformation of a subset of autocorrelation coefficients.

The autoregressive nature of the all-pole model allows this
subset of autocorrelation values to approximate the remaining val-

ues. This is the basis for obtaining a good spectral approximation.

If the all-pole model is adequate for speech, then it should be
satisfactory for automatic word recognition to employ directly the
subset of autocorrelation coefficients used in LPC analysis in a
squared Euclidean distance computation. Since it would be appro-
priate to work with normalized correlation coefficients for RNS
implementation, it would be necessary to exit RNS to carry out the
normalization and then reconvert to RNS for the distance computa-
tions. Such a technique for distortion computation is simpler to
implement than either the log spectral deviation or LPC distortion,
and there is no need to solve the normal equations for construction

of the reference library as in the LPC method.
1.3 SUMMARY OF NEW RESULTS

In FY85 we examined experimentally the direct autocorrelation
method by computer simulation using an expanded data base. We
concluded that it has the desired effect of dramatically reducing
the computation's range. Our simulations show a reduction from an

equivalent of 30-bit distortion samples to about 9 bits,
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At the same time, we found that the reduced range can be used
to reduce the quantization of the input speech samples, and this
suggests an additive noise tolerance that we would not expect for
the LPC method. We studied the implications of the Euclidean
distortion metric on the RNS systolic array implementation of the
DTW algorithm and found considerable opportunity for hardware
simplification resulting from a reduced range and a simpler

algorithm,

We also developed a simplified method for quantizing the RNS
representation of distortion values to a smaller range using a
partial mixed-radix conversion that establishes natural quantization
boundaries. These simplifications permit the distortion computa-
tions and ~ubsequent guantization to be performed easily in the same

pipelined array used for DTW.

The net result of our work is confidence in an RNS implementa-
tion of an effective word recognition algorithm in a systolic archi-
tecture. This architecture is of low complexity and high through-

put, and is a strong candidate for VLSI implementation,

The processing system studied and simulated is illustrated by
the block diagram of figure !'.1. The first processor block applies
some preprocessing functions to the digitized test speech, but not
in RNS. The autocorrelation analysis is performed in RNS, using a
modified version of a linear systolic array previously designed for
transversal filtering by the staff of MITRE's Integrated Electronics
project. The output of this processing block is a set of normalized

correlation samples, The normalization is carried out by a
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SECTION 2

PROCESSING FUNCTIONS FOR AN RNS WORD RECOGNITION SYSTEM

S WA

s Figure 2.1 is a schematic diagram of a DTW-based word recogni-
4 tion system [2.3]. A detected test input utterance (a word to be
» matched to one contained in a reference library of stored utteran-
ces) is analyzed in short blocks of overlapping segments or frames.
From each frame a vector of autocorrelation coefficients is compu-

ted. Segmentation into short blocks allows the process to be viewed

'i.
e

PSR XX
-

as locally stationary, the time variation being accommodated by the

-
-

-
~

sequential processing of overlapping analysis segments. It is

|

-
-
ol
-
ot

assumed that a similar analysis has been performed on the utterances

-,

LA
: f..

-
-

4 contained in the reference library. Autocorrelation vectors are

PRI SRR
-
-2

compared to produce a local measure of distortion between individual

.

segments of the test utterance and those of one of the reference

; utterances.

k)

)

b If there are n segments of the test utterance and m segments of
the reference utterance, then the local distortions define a two-

hJ

: dimensional grid of n x m distortion values based on an appropriate

: distance metric. The low values correspond to good matches between

k) . .

¢ analysis segments, and the high values correspond to poor matches.

. The purpose of the DTW algorithm [2,3]) is to effect time registra-

3 tion between tne stored reference and test segments to compensate
for local time expansion or contraction of the test utterance with

!

; respect to the reference. It is a dynamic programming algorithm

. that calculates the accumulated weighted distortions for the
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least-cost path through the grid of distortion values. This score
for the comparison of utterances is normalized and then compared in
magnitude with the normalized scores for other pairings to produce a

final decision.
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The local distortion computations, together with the path
computations, impose the greatest computational burden in the recog-
nition process. A local distortion must be computed for each
selected pair of test and reference frames. These computations must
be repeated for each reference utterance stored in the reference
library and used in the shortest-path computations to produce a set
of DTW scores from which the best match is determined. This compu-
tational bottleneck in the word recognition process can be impacted

by a combination of RNS computation and systolic array architecture.

2.1 PREPROCESSING OF THE SPEECH WAVEFORM

The word recognition process involves digital computations on
overlapping segments of the analog waveform. Preprocessing of the
speech signals is required to obtain the appropriate sampled (8 kHz)
digitized (16-bit) signals. Input processing of the speech wave-
forms and their A/D conversion are pictured in fiacure 2.2. Voice
signals are picked up by the microphone, amplified, and passed
through low-pass filters to remove frequency components above
4 kHz. After equalization to compensate for a finite sampling aper-
ture, the analog signals are converted to 16-bit digital samples at
an B kHz sampling rate by an A/D converter. Output from the A/D
converter is either stored in a designated file for future input,
or, in recognition mode, input directly to the word recognition

system.
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4 Detection of an utterance, as contrasted with a period of AN
) Y
Y silence, is regarded as a digital preprocessing function. In our ‘.-.;"-\
RS
- experimentation, we have based utterance detection on observation of e
L energy statistics. The procedure is pictured in figure 2.3, The
) o . N
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The digitized output of the A/D converter (figure 2.2) consists
of 16-bit samples. Since 16 bits is more than is needed for
isolated word recognition, the input samples are quantized to a
smaller number of bits, usually 8 or 10, by truncation of the
low-order bits of the sample. Performance results for various input

quantizations from 2 to 16 bits are reported in section 3.4.

2.3 PRE-EMPHASIS AND NORMALIZATION OF SPEECH SAMPLES

The N digitized samples of a detected utterance in the speech
input stream are normalized prior to analysis to render the analysis
insensitive to system gain variations. Prior to normalization,
however, pre-emphasis of the speech samples may be introduced if
desired. The first-order predictor pre-emphasis filter employed in
our experimental work is shown schematically in figure 2.4. The
first sample of the utterance is unchanged; each remaining sample of
the utterance is modified as shown by subtracting from it a constant
u times the preceding sample, where we set |1 to the value 0.95.
Investigations of the effects of pre-emphasis on word recogni-

zability are reported in section 3.3.

Normalization of the speech samples is accomplished by
multiplying each sample by a constant related to the input
quantization and dividing the result by the RMS value of the N
samples of the utterance. This result is then clipped, if
necessary, so that the final integer value lies within the range
specified by the chosen input quantization. The constant employed
in the premultiplication of the samples is selected so that clipping

occurs occasionally but not frequently.
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Figure 2.4, Pre-Emphasis of Speech Samples
2,4 AUTOCORRELATION ANALYSIS OF UTTERANCES
The purpose of spectral analysis in a DTW-based word recogni-
tion system is to facilitate the evaluation of a local distortion

measure or distance function between selected pairs of reference

frame data and test frame data. 1In our earlier work [1] we chose a
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method of spectral analysis based upon LPC employing variants of the

Itakura-Saito distortion measure. This distortion function takes

the form

drg = scalar + ) ryuy (1)
3

where the ry represent the calculated autocorrelation coefficients
for the test frame data, a short segment of the test utterance data,
and the uj represent the inverse correlation coefficients for a
stored reference frame [1). Unfortunately, the uy are typically
small fractional values that must be scaled up before conversion to
integers for RNS computation. Although the form of eguation (1)
appears to be well-suited for RNS implementation, the required
scaling introduces difficulties. From our analysis [1] we expected
to require an RNS range of about 30 bits to contain this
computation, Simulation results for three RNS with respective
ranges of approximately 30, 29, and 28 bits showed corresponding
recognition error rates of 1.7%, 40%, and 100%. These results were
particularly perplexing in the light of our success in performing
the path computations using a coarse guantization of the distortion
function values. It did not seem reasonable to have to employ so
many bits to perform the distortion computation if almost all the
precision in the outcome was discarded in the coarse quantization

employed for the path computations.

In FY85, we replaced the LPC analysis with a simpler autocorre-
lation analysis based on the use of a squared Euclidean distance
metric (section 2.6). While the square-law behavior of this distor-
tion function poses some dynamic range problems, the realization

from our previous work that we can maintain good discrimination

18
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Pigure 2.5. Segment Extraction and Windowing

and the wj are weights that depend upon the type of window used.
In all our work we employed a Hamming window. We generally chose

P = 12, but the effects of making other choices are reported in

section 3.5.

The same analysis is applied to both test and reference utter-
ances. The coefficients of (2) are normalized, scaled, and con-
verted to integers in RNS representation before computation of the

distortion function, as discussed in section 2.6,
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o aght
:E' 'el:
v The change in method of spectral analysis from a full LPC-based A
g analysis to a simpler analysis based upon the squared Euclidean v ,; .
*:: distance of the autocorrelation coefficients simplifies the con- "q:;f:
32, struction of the reference library in training mode. It is not ",:I:;’g
“ necessary to compute and store the inverse correlation coefficients ;!'."‘;f
o of the reference frames. The data now appended to the reference ;‘,“?
:;\; library for each utterance consist of the number of models (frames, :;:‘;:j
:::: segments) characterizing the utterance, a pointer to the utterance .:g':':
‘:" text string, and the models themselves. Each model (one per frame ;:; :
"y or utterance segment) is a data structure consisting of the P + 1 o
:\.‘ autocorrelation coefficients and a pointer to the next model. The .\ }
.’ coefficients are normalized, scaled, and represented by their resi- "{ ]
"°: dues modulo the n moduli of the chosen RNS before being stored in the
z:;: the library. i
:::5 s
::a 2.6 SQUARED EUCLIDEAN DISTANCE FUNCTION ;0.
Ny 3008
e, The evaluation of a local distortion function to measure the i:.".-i
::: degree of dissimilarity between a pair of reference and test frames ‘.?:::
:‘,:: is the most computationally intensive calculation performed in a ,\",
':.: DTW-based word recognition system. Hence it is the calculation J. ::
~ that potentially benefits most from an RNS implementation. However, ~.‘
}\. it is not sufficient that the computation consist mainly of addi- &“
}.":E tions and multiplications to be well-suited for RNS implementation. E::
:‘,l: In an earlier phase of this study, the Itakura-Saito distortion A
) metric was employed for computing local distances between reference TN
{:". and test frames. Even though the computation itself consisted \1:\
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:iEQ chiefly of the calculation of a vector inner product, easily done in
f%%: RNS, an unacceptably large range was required for the RNS to contain

the calculation (chiefly the result of the large upscaling required
ey to convert the inverse correlation coefficients to integer form).

To prove practical and beneficial, an RNS implementation needs a

}$§ distortion metric that can be computed in RNS without requiring a
Aond]

e large dynamic range. In our recent work we successfully employed a
W squared Euclidean distance metric that directly uses the autocorre-
[

:{? lation coefficients of the test and reference utterances.

':':’-:

7":0:3

S The Euclidean distance computation consists of three steps:
s

g 1. Normalize the correlation coefficients

[\

5“

Y rj' = rj/ro j=0, 1 «e., P

where P is the order of the autocorrelation model

2. Scale and convert to RNS representation

4
e jj=0,1,.“,P)

#
:::::. rji = fSrj '] (mod Pi)
AN (i=1,2,.“,n

where (x| denotes rounding to the nearest integer, S is
%ﬁc the scale factor in use, and n is the number of moduli

el comprising the RNS
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Compute the distortion value in RNS

P
4; = X (ryi - uji)z (mod pj) (i =1, ..., n)
j=0

where d; is the i-th component in the RNS representation

of the distortion value 4; ryj and ujj are the

residues of the (normalized, scaled, and digitized) test

and reference correlation coefficients, respectively.

Sy S

-

|38

»
-

Scale factors 8, 16, and 32 have been employed in simulations.
Eight appears to be adequate for word recognition. With an input
quantization of 12 bits and a scale factor of 8, an RNS range of
1000, or around 10 bits, is adequate to contain the distortion
computation. This is a dramatic improvement over the 30 bits or
more we found necessary to contain the Itakura-Saito metric
calculation in our earlier work, and provides the key to a
successful implementation of this calculation in RNS. Results
concerning the determination of the RNS range are presented in

expanded form in section 3.2,

2.7 QUANTIZATION OF DISTORTION VALUES BY PARTIAL MIXED-RADIX
TRANSLATION

In {1), quantization of the distortion function values to a few
levels was necessary to carry out the shortest-path computations
without leaving RNS for magnitude comparisons. If the absolute
differences of cumulative distances are less than half the largest
modulus, then the magnitude comparisons can be made ir the channel

for the largest modulus and communicated to the remaining channels,
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14 ol
?.ﬁ:‘! distortion measure based on squared Euclidean distance is to be ,,';f:
e used, the range required for the distortion calculation is reduced —;-‘:-
# )
3 to aroun or its, permitting use of a est siz three- :
3?: d 9 10 bi itti f a mod ized th t
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iy for quantization of the computed distortion values to two or three F 3
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* levels with a minimum of computation regquired to perform the quanti- ?‘i'
ot zation.
]
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i:g:
55 As shown in figure 2.6, two-level quantization is achieved by
l"
oy setting a threshold at p;. Distortion values less than p; are
mapped to zero, and all others are mapped to !. Three-level quanti- Q;?
o o)
e zation is achieved by setting two thresholds, one at p; and the ish
. (0
1)
¢ other at p;pj. "t
W, Wt
‘?5_ .n'l a8
. For two-level quantization, 4 < p) implies that n; = nj = 0. o at 4,
A 5 2
q 4 Prom (5), we see that r; = r) (mod pp) and r3 = r] (mod p3). No %E :
AR
4y calculation is required other than possible reductions of r; (mod ﬁ;,
55
%ﬁ p2) and (mod p3). The values of n> and nj need not be known; all we AhRY
" care about is whether they are zero or nonzero. The choice of p; as
v . .
:xi threshold may, of course, be inappropriate, but can be adjusted by
[
:_j the choice of the moduli set. Two-level quantization of the distor-
Q‘; tion values has proven to be adequate for word recognition, as shown
- by the simulation results in section 3. oy
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B
Calculation of nj is required for three-level quantization by :}’:',-:;
this scheme. Again, 4@ < p; can be detected by testing whether ;:':::_::*'.‘
RN
r =rj (mod pp) and r3 = r; {mod p3). To detect when p; < d < R
p1p2, we have to distinguish the case (n; = 0 and n3 = 0) from the
case (ny > 0 and n3 = 0). This requires calculation of nj by (6).
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This calculation is simplified if the moduli are chosen so that p; hﬁ'
{mod py) = * 1, thus eliminating the multiplication by pl'l. The E
determination of whether nj3 is zero or nonzero can be simplified by ]
choosing the moduli so that p; (mod p3) = * 1, eliminating the
multiplication by p; in (6). The value of n3 does not have to be
calculated; we need only determine whether or not r) + njyp; = rj t
(mod p3). In our simulations, quantization to three levels has been Y,
less effective than guantization to two levels. The second 9
threshold does not seem to be very helpful in our method of word :;:
recognition. Its principal effect is to increase the DIW scores of E:;
mismatches which already have high scores. On the other hand, the h"
higher distortion values make a larger RNS necessary for the .{
shortest path computations and/or lead to an increase in the ;V:
frequency of overflow in these computations. These issues are fﬁn
discussed further in section 3.8. &
2.8 SHORTEST-PATH COMPUTATIONS
A DTW algorithm finds the shortest path through a grid of y
points. Each point of the grid represents a matching of a selected .:T'
pair of short-time segments, or frames, of the unknown test pattern ésgf
and a given reference pattern. Associated with each grid point is a i:jf
value that is the calculated local distortion for the particular ol
match of test and reference frames represented by the point. Asso- “;;
ciated with each path through the grid is a distance that is a ;;;_
weighted sum of the local distortions for grid points lying on the 3;;
path. The output of the DTW algorithm is a score, the length of the a
= shortest path through the grid, representing the degree of dissimi- -
N larity between the matched patterns. -
;.
f?\
).
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Three functions are required for dynamic time-warping: con-
struction of the DTW grid, the set of points (i(k),j(k)) on which
the DTW path is permitted to lie; evaluation of a local distortion
measure for all points of the grid; and location of the shortest
path through the DTW grid from the point (1,1) to the point (m,n),
where m is the number of reference frames and n is the number of
test frames to be matched. The shortest-path algorithm is a special
case of dynamic programming [4]. In this section the determination
of the DTW grid point set, given the number of reference frames m,
the number of test frames n, and a set of local and global path
constraints, is described, and the calculations required for finding
the shortest path *hrough the grid are derived for a particular
choice of local constraints. The unknown test utterance is always
assigned to the y-axis (vertical), and the reference utterance is

assigned to the x-axis (horizontal).

2.8.1 DTW Path Constraints

Initially, before application of any constraints, the DTW grid

(figure 2.7) consists of the m X n points (i,j), 1 <i<m,

1 < j <n. Each point (i,]) represents the matching of the i-th

reference frame against the j-th test frame. Certain matches and
sequences of matches, i.e, paths, may be unreasonable to make,
however, and should be ruled out in advance. Rules are adopted in a
speech recognition system to avoid such unreasonable paths and
pointless computation. The local and global path constraints define

these rules.
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7 Local path constraints specify the ways in which a particular ‘.‘{}?'
1) , \ . . . WG
:. path point (i(k),j(k)) can be reached from a preceding path point \.;ﬂs.
o . . ) BRI
» (itk - 1), j(k = 1)). In accordance with [3]), we represent allowed 2149
R} .
local paths by a set of productions from a regular grammar. A
NOw)
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where L is the length of the production, and the (a,b)'s are seg-
ments in a sequence of local moves. All a's and b's and L are
assumed to be (small) nonnegative integers. Using a production, a
local path to the point (i(k),j(k)) can be traced backwards to the
point (i(k - 1), j(k - 1)) through L - 1 intermediate points:

k-th point: (i(k),j(k))}
s s
s-th intermediate point: (i(k) -1Y1 ag, j(k) '1?1 by)

R & X X XA Y
le‘ «,‘,-. -

. o
2,

L L
(k = 1)st point: (i(k = 1),3(k = 1)) = (i(k) - 121 ag, jlk) - 1?,1b1)

Tt AN

This representation of local path constraints provides a great
deal of flexibility in their choice. The left-hand side of figure
2.8 illustrates the type 3 constraints of [3], which are specified

by the four productions

(1,0)(1,1)
(1,0)(1,2)
(1,1)
(1,2)

These four productions define four distinct possible local paths to
a given point, (i(k),3j(k)) in the DTW qrid, coming from the points
(1(x) - 2, (k) = N, (i(k) - 2, jk) - 2), (i(k) - 1, j(k) - 1),
and (i(k) - 1, j(k) - 2), respectively. The first two of these
local paths also pass through the intermediate point (i(k) - 1,
j(k)). Note that for any local path to be valid, its starting point
(i(kx - 1), j(k - 1)) and its end point (i(k),j(k)) must belong to
the valid point set.
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Ly A zero value for an a (b) in a production implies that the
A3 corresponding reference (test) frame is to be matched with more than

e one test (reference) frame. A value greater than one, on the other

i hand, results in one or more reference (test) frames being skipped
R (not matched) altogether. Thus, paths P! and P2 of the type 3 con-

W straints allow a given test frame to be matched with more than one
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reference frame, while paths P2 and P4 permit the skipping of a test

1
#Q( frame. Under these constraints, each reference frame is used exact- =8
"oty ) . Wit
ly once. Corresponding to the type 3 constraints is a reflected L
%g: version, the type 3a constraints, shown in the right-half of figure V?Q
A . . LY
ﬁg’ 2.8. These are specified by the four productions E»a
k) f
[
" &3
N AT
it Pl: (0,1)(1,1) _—
g" P2: (0,1)(2,1) ‘;_:
o P3: (1,1) e
A5 P4: (2,1) 2% '
5 4
|". b ‘. at
4$. For these constraints, paths P! and P2 match a given reference frame -—
ﬁ against more than one test frame, while paths P2 and P4 permit a 2 ‘7
Sy
25\ reference frame to be skipped, but each test frame is 3sed once and }%
. W
o only once. ¥ :%
;'u‘; 2 ":
:ﬁk While there is no apparent reason for claiming that one set of J
ey "-
:ﬁﬁ constraints performs better than the other, it seems more natural to N
B »0)
LY require that each test frame be matched exactly once, while allowing '?&
b reference frames to be skipped or used more than once. Myers et
W
}ns al. in effect tested both types (along with a number of other sets
J
B of local constraints) by using the type 3 constraints but allowing
4 ..
ey the assignment of test and reference to the x- and y-axes to be 00
N reversed. They found better results for the reversed case, which T:
i; corresponds to using the type 3a constraints. We used type 3a }tF
§: constraints in all simulations reported in section 3. f’:f
. e
[ .'(- \
LA, vt N
« * " A
: oAy
\(‘-
y) 'v*‘r 4
AR 't-f'k
. BRY!
“ Y
\ g
> 3‘?#
,‘ 32 :: s
. o)
i

;‘r,‘m *3\3.\,3‘:;; ;}t&iﬁ}t}.’y~ AT o ;:‘!':’2“\}:‘:"':«".'3‘;" o
e

' v v " X . Y
, DAL - r?ﬁta;z:f%), P MO MR IR N SNy
4 (W) o o { "y (
OOGH Wiy, A 7

.

RS
¥ o I S ) 45 6 i

4
B}



:E:: Associated with each local path to a grid point (i,j) is a path
:i:a cost that is a weighted sum of the local distortion values for grid
': points passed through by the path. One of the simplest of weight

functions takes the form ~
1'3'5
P wik) = i(k) - i(k - 1). (8) i?
g ]
“‘.: For this weight function, used in all simulations reported in :“(i.
:EE‘ section 3, the weight assigned to a local path is the distance .;n'
::: traversed in the reference direction, i.e., the sum of the a's in ?.:3,
a the production defining the local path. It is customary to divide A
R the weight equally among the segments forming the path. Thus, for b i
:E' type 3 local constraints, this weight function assigns unit weights 3';'
2‘. to all path segments, whereas for the type 3a constraints a frac- ";‘,;"
’:"‘ tional weight results for the segments of path P1. """.“"
: ; Local constraints limit the valid point set making up the DIW l'|
:::: grid in the following manner. For each procedure P of a local con- .:
Re straint, let sum(a) denote the sum of all the a's and let sum(b) DR
N denote the sum of all the b's. The slope of the local path is given &
::‘g by the ratio sum(b)/sum(a). Let e,y and epj, denote the maxi- ;\Ei
::: mum and minimum slopes, respectively, obtained over a11. productions " ;':i

comprising the local constraint. If we draw lines of slope epip
i and epax through the endpoints (1,1) and (m,n), the resulting four ""t
::; lines define a parallelogram in the initial DTW grid within which :‘:
::E all valid points must lie (see figure 2.9). Points intermediate to \;‘.:
: local paths may lie outside this parallelogram, but the endpoints of )
";,: such paths must themselves lie on or within the parallelogram. In :.:.':
:. U] figure 2.9 the parallelogram resulting from the type 3 constraints ':::E:
:::s of [3] is shown, drawn in solid lines, representing ten reference :?.::r:
L frames and eight test frames. '_‘_'.%
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Figure 2.9. Grid for Type 3 Local Constraints

Global path constraints were introduced by Sakoe .and Chiba [2]

to further delimit the legal point set. These constraints take the

form
i(k) - jk)f <g (9)
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for some nonnegative integer g. They constrain the DTW path to lie
V within a corridor of width 2g centered on a 45°' diagonal through

the point (1,1). Of course, if 'm - n' > g, then the endpoint (m,n)

;&f cannot satisfy the global constraint, and no legal DTW path can be
\

}5’ found. In addition to restricting where the path can lie, the

Y

%S global constraint can be used to rule out altogether a search for

the shortest path whenever the lengths of the test and reference

it utterances are too dissimilar.

A choice of g = 0 permits no path unless n = m, in which case

all local paths must begin and end on the diagonal from (1,1) to

'ﬁj {m,m). The global constraint usually limits the DTW grid by cutting

:ﬁé off the interior corners of the parallelogram defined by the local

‘E? constraints. In the example illustrated in figure 2.9, only the
lower right corner is cut off by the severe global constraint

;5, g = 2. The resulting legal points comprising the DTW grid are shown

E%? as solid grid points, The hollow or empty points lying outside the

:k parallelogram are intermediate points which may be passed through in

! traversing certain local paths that begin and end in the legal point

{ [ set. The selected local distortion measure must be evaluated for

tﬁ) such intermediate points as well as for the points in the legal

a set, A global constraint g = 9 has been employed for the simula-
tions reported in section 3, except for section 3.7, where larger

?{{ values have also been tried.

o

té} DTW grids from some simulations are shown in figure 2.10. For

b the four examples shown, type 3a local constraints were applied,

i;ﬁ with the global constraint set at g = 9. Single-threshold quantiza-

xié tion of distortion values to 0 or 1 was applied. Points lying out-

%ﬁ} side the legal point set and the allowed set of intermediate points

;ﬁ\" ” *Q* *\vx " ~$x
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! are filled with a solid square. Points belonging either to the Q&%}
¥, "3
;. legal point set or the set of permitted intermediate points (border- l%g?

t ok
» ing on the lower right-hand side of the legal set) are filled with a AN
ﬁi solid star or asterisk if the corresponding quantized distortion 'ﬂs@
, . 4
N value is 1, and with a hollow star if the quantized distortion value ‘gfd
) 80
1 is 0. W
B W
W ‘- l‘.n‘:
"y Figure 2.10a shows the DTW grid obtained for matching two simi-

E lar words, a testset "alpha" against a library reference "alpha." A

path with low cost can be found easily. The (normalized) DTW score

W, for this match is .054545,

X st
t§ Figures 2.10b (test = "bravo") and 2.10d (test = "delta") show §4\¢

L L)
I{ some similarity between the test pattern and the reference pattern hﬁqﬁ

X \

o for "alpha," but clearly no path can be found with so low a cost as gﬂﬁt

- in figure 2.10a. The resulting (normalized) DTW scores are .321429 NS
§$ for figure 2.10b ("bravo") and .327273 for fiqgure 2.10d ("delta"). :%xﬂ

Ay
:'. A
&, 0 B3N
Wy Figure 2.10c (test = "charlie") shows a very poor match between b
g test and reference patterns. The resulting (normalized) DTW score ;Eﬁ%

o et
4 is .821429. I :’i

- "
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W . IR
o 2.8.2 DTW Path Computations 4t :
o o
b Dynamic time-warping for speech recognition was first formu- ﬁfy

lated as a problem in dynamic programming by Sakoe and Chiba [2]. :f:'

t’. R
W The problem of finding the best path through the DTW grid reduces to dk“
;3 a special case of dynamic programming known as the shortest-route Y
3 :

3 problem. This problem can be stated briefly as follows: Given a Q¢t
ol b S
?. eonnected graph with two distinguished nodes A and B and with a cost K\x‘

L% %
L associated with each arc from a node i to a node j of the graph, : ut
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find the path, i.e., the sequence of arcs from A to B, whose summed
cost is a minimum. Algorithms for finding an optimal solution to
this problem were first given (independently) by Moore [5] and
Dantzig [6]. Subsequently, Bellman [7] formulated the

shortest-route problem as a dynamic programming problem.

The network, or graph, to which the shortest-route algorithm is
applied is defined as follows: WNodes of the graph correspond to
leqal points of the DTW grid, with the grid point (1,1) as the node
A and the grid point (m,n) as the node B. The arc costs are defined
as weighted sums of local distortions obtained for matches of refer-
ence and test frames corresponding to grid points from node i to
node j. For the type 3 local constraints and the weight function
defined in equation (8), the costs defined for arcs of the network

derived from the DTW grid have the form

c(Pl) = c(P2) di"],j + le

(10)

c(P3) = c(P4) dij

where dij is the local distortion calculated between the ith

reference frame and the jth test frame.

The minimum cost, ¢ij. for any path to the node (i,3) is com-

puted (under type 3 constraints and weight function (8)) as

Cij = Min (dij + Ci-1,5-1r dij + Ci-1,j-2¢

(1)
djy + dj-1,4 * Ci-2,3-1r dij * di-1,§ + €i-2,5-2)
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cost of reaching (i,j) by local paths P1 and P2. Let N
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RN cis =dis + Min {cj_q 4 cy ) (12) 3
;vh:'. Cij = dij in 1€j-1,9-1s Ci-1,5-2"- o
A::'::: i\
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g2y
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Cmns the minimum cost for any path to node (m,n), is the score -
RO i
c"‘" returned by the DTW algorithm. %
=) %
; 3
"t::: The shortest-path computation for type 3 local constraints and h
weight function (8) can be summarized as follows: >
B " ~ 1“‘ \.
*Pn\ '\;
D,
I X 1. Compute the local distortion djj from the test :'.;
15\ frame correlation coefficients rp(j) and the N
) reference-frame correlation coefficients u,(i) .
,.." "'
'd\",‘:). :"-
) ":. 2. Compute cjq = dj4 + Min rc-_1 i~1r Ci-1 -_2\ "
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3. Compute cjy = Min (éij, dij + ci-1,j)

We would like to employ RNS for step 1 because it is the most
computationally intensive calculation in a DTW-based word recogni-
tion system. The problem that arises with RNS is the magnitude

comparisons required for steps 2 and 3.

2.8.3 RNS Implementation of the Shortest-Path Computation

In order to make use of RNS for the local distortion calcula-
tions of a DTW algorithm, it is necessary to remain within RNS for
the entire DTW shortest~path computation, leaving RNS only to
convert the final score output by the algorithm for thresholding and
comparison with other scores to select the best ma-:.ch. As discussed
in section 2.8.2, solution of the shortest-path problem involves a

sequence of additions and magnitude comparisons. In general, magni-

_",.‘5 ;

At L

tude comparisons cannot be performed efficiently within RNS.

7

e

B
B

¥

However, the magnitudes being compared in the shortest-path computa-
tion may be similar. If their difference in absolute value does not
exceed half the largest modulus in use, then relative magnitude can
be determined without leaving RNS simply by testing the difference
modulo this largest modulus.

In {1] we reported that these differences were not small enough
to be contained within the range of a single modulus. However,
further study showed that with suitable quantization of the local
distortion values the differences could be kept within the range of
a single modulus. In particular, quantization of the local distor-

tion values to a single bhit ("match™ or "no-match®") has proved very
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effective in our word recognition simulations. With quantization of
distortion values, the revised shortest-path computation is as

follows:
1. Compute djy from rp(j) and un(i)
2. Quantize to a single-bit d'ij : 0 = match, ! = no-match
3. Compute éij =d'jy + Min(cj.y, j-1s Ci-1,5-2)
4. Compute cj4 = Min(éij' d'jj + ;i—1,j)

The effects of overflows in the path computations are examined

in section 3.8.
2.9 SELECTION OF THE WINNING TEXT

DTW scores calculated in RNS by the shortest-path algorithm are
reconverted from RNS to conventional arithmetic representation and
are normalized before deciding which is the winning text. Normali-
zation is necessary to adjust for differences in utterance length;
otherwise, reference texts with longer lengths tend to have larger
DTW scores and are less iikely to be accepted as candidates or
winners than are shorter texts. The normalization factor used in
all simulations reported in section 3 is min(m,n), where m is the
number of reference frames and n is the number of test frames.
Under the weight function (8) and employing single-bit quantization
of distortion values, unnormalized DTW scores cannot exceed the
number of reference frames m. Normalization will make most

normalized DTW scores lie in the range 0 to 1, but when n < m, some

normalized scores can be greater than 1.
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) L. S
subsequent to the simulations, an error is counted if this is not
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i N
e SIMULATION RESULTS ': ::
Lk
R et
:\3 Results were obtained from many simulations performed to eval- 15
\ 14
;;5' uate a DTW-based isolated word recognition system for which the & ¢
[300) . . 3
0 essential time-warping signal processing functions are implemented ot

in modular arithmetic. The database for building reference librar-

QQ? ies and supplying test inputs to the simulation runs is described in
RS

Qﬁg section 3.1. Section 3 also describes the results of various

[ A1)

¢ . , , ,

{{Q simulations performed to evaluate various choices and parameter

settings in the implementation design. The simulations discussed in
section 3.9 employ a different database called the "rhymes"
;,i database, constructed for a study of word recognition when the

U9 vocabulary contains similar sounding words.

j 3.1 SIMULATION TEST SET

Ko

139

ﬂg; In [1] we used a speech database consisting of single-speaker
i utterances of eleven different words, the ten digits 0 - 9 plus

Ei: "oh.” We felt confident that the recognition results obtained from
:é} simulations using this database would be valid for larger databases,
~g$f expecting that matches of similar words, i.e., different productions
.. of the same word, would continue to exhibit low DTW scores relative
%ﬁ{ to matches of different words. Nonetheless, it seemed desirable to
:é% repeat our simulation experiments on an expanded database in order
gﬁ: to gain further confidence in the validity of this expectation.

TT; Therefore, the original test database was expanded by the addition
&5' of the 26 communication code words for the letters A - Z, giving us
434

a vocabulary of 37 words.
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b 2 g!i‘:‘
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L)
e A
s.!' Five different productions of the 37 words were recorded for ;,:
& : ) . et
.‘;:. use in the construction of reference libraries employed in the simu- _ :;g
" o . . oty
K lations. An additional sixth production of each word was recorded e
‘*9' for the test input signals used in the simulations. Table 3.1 lists '.:";.;1
¢ Od)
:: the 37 vocabulary words and shows the segment lengths of the six ::.:?n::‘
. ) hey
:,' productions for each word of the vocabulary. In all simulation runs ':::;::
A INA
ot except those reported in section 3.7 the global constraint g was set [l
i at 9. No DTW score was computed if the number of reference and test par.
?. )
' frames differed by more than 9. This made some identifications 3
] X
I harder to make than others. For example, "five" and "three" of the t ,(\
) Ot
A, testset can be matched only with two correct members of the Pty
T reference library, whereas many test inputs can be matched with five Ntk
4 !
:i. productions from the library. On the other hand, "foxtrot" cannot lgzg
- " W\
o be incorrectly identified, for the global constraint rules out any ;3::‘
" . ] "i
£ matches between the test and an incorrect library utterance. S
'.5 3.2 DETERMINATION OF THE RNS RANGE _.'~".::
% f‘c':‘ﬂ
W) 3T
L) ) ) i ) . Y
W A major breakthrough was achieved in FY85 in reducing the RNS »
o range required for implementation of a DTW-based isolated word '.';',:;,
\ 14t
‘ recognition system. Replacement of the Itakura-Saito distortion ".:'i'.i
& "
4 ' metric by a squared Euclidean distance computation employing a . ::§
) O
, L y
! subset of the normalized autocorrelation coefficients of the test g, v
B
. and reference segments reduced the RNS range required for the Ik
X distortion computations from about 30 bits [1] to 9 or 10 bits, with r;..-:
0 f{\h
5- no increase in recognition error rate and with improved discri- ;-j.v:-\,
P L0 "
e mination between DTW scores for correct and incorrect matches. Saiad
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Table 3.1

Number of Segments Produced for Five Reference Productions
and One Testset Production by Utterance Database Segmentations

Word Prodnt Prodn2 Prodn3 Prodn4 Prodn5 Test
alpha 56 56 61 62 62 55
bravo 56 58 58 60 57 58
charlie 60 64 69 67 60 57
delta 58 51 53 56 54 55
echo 54 54 53 54 57 52
eight 56 53 50 54 47 50
five 78 67 82 82 82 72
four 59 60 58 58 61 55
foxtrot 91 103 101 103 104 99
golf 56 58 53 62 61 55
hotel 65 73 n 75 75 66
india 62 67 VA 78 79 65
juliet 81 84 80 86 80 79
kilo 52 56 59 61 60 52
lima 55 58 62 62 58 58
mike 47 50 49 51 47 53
nine 62 60 57 56 61 60
november 75 77 76 78 75 73
oh 46 54 47 46 42 47
one 51 60 57 51 50 52
oscar ’A| 73 74 77 76 73
papa 57 64 78 71 64 57
quebec 58 62 66 69 64 67
romeo 77 70 VAl 70 68 69
seven 56 56 55 58 58 54
sierra 60 67 68 69 64 69
six 68 65 64 61 60 72
tango €4 69 67 66 68 66
three 57 57 66 64 61 50
two 54 48 49 51 46 50
uniform 77 84 78 82 82 80
. victor 57 66 67 68 A 66
’*, whiskey 59 60 68 67 64 60 ™
;?*' xray 64 67 70 67 65 63 e
o, yankee 53 60 72 73 73 68 o
y zero 53 59 57 67 61 57 ;: 
g zulu 61 63 61 64 63 58 L0
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3y

the normalized correlation coeffi-

As discussed in section 2.6,

cients, lying between +1 and -1, are scaled before conversion to

-
El

" 0%

integers and RNS representation. Three scale factors were tried:

32, 16, and 8. For each scale factor, we computed histograms of the

distortion values resulting from running the word "alpha" against

the entire reference library. Plots of the resulting histograms are

shown in figure 3.1. These plots show that RNS with respective

ranges of 16000, 4000, and 1000 are adequate for containing the

local-distortion computations when the normalized correlation

coefficients are scaled by 32, 16, and 8, respectively. Since

scaling by 8 has been shown by extensive simulation to be adequate

for good discrimination between correct and incorrect word identifi-

cations, we have chosen 8 as our scale factor and used 8 in all

simulations reported in the remainder of section 3. For these

simulations we have employed two different 3-modulus RNS {23,11,2}

with a range of 506, and {13,7,5} with a range of 455. Both have

given excellent word recognition results even with occasional

overflow of distortion values. We conclude that 9 bits are suffi-

cient for performing the scuared Euclidean distortion computation in

RNS.

3.3 PRE-EMPHASIS OF SPEECH SAMPLES

To study the effects of pre-emphasis of the speech samples we

computed histograms of all normalized DTW scores produced by the

shortest-path algorithm during a complete simulation run of the

testset input against the stored reference library. The scores were

divided into two classes depending or whether similar words

(different productions of the same word) or different words

(different text values) were being matched. Plots of the histograms
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are shown in figures 3.2 (pre-emphasis applied to all speech
samples, with u = .95) and 3.3 (no pre-emphasis applied). The a and
b plots represent simulations for two distinct RNS: {23,11,2} and
{13,7,5} respectively. (Single-bit quantization of distortion
values was used for all simulations. PORDER is the order P of the
autocorrelation model). The histogram heights represent the
percentage of all matches of similar words (different words) whose
normalized DTW scores fall into the respective classes 0, 0 to .1,
.1 to .2, «..., .9 to 1., and greater than !'. (Normalized DTW scores
> 1 result sometimes when the number of reference frames exceeds the
number of test frames. The normalization factor employed is
min(m,n).) Percentages have been rounded to the nearest integer

value before plotting, so that percentages less than .5 do not show.

Fiqure 3.2 illustrates why the DTW algorithm is working so well
in this implementation: there is excellent separation between the
scores for similar matches (correct identifications) and those for
different matches (incorrect identifications). In general, there
are several correct matches in the library for each test input, and
the best match is selected as the winning candidate. Decisions,
therefore, tend to be made at the left or low-end of the histogram
of similar words where, in this case, there is no overlap with the

histogram of different words.

Comparison of figure 3.2 with figure 3.3 shows that pre-empha-
sis of the speech samples is helpful for better separation between
the DTW scores for matches of similar words and those for matches of

Ty different words. For the simulation shown in figure 3.3b, a single

¢ ‘o

%ﬁ recognition error oc -urred (no errors for the other three cases);
W
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for the simulation shown in figure 3.2a, the smallest ratio of ; .

lowest wrong score to lowest correct score exceeded 3.7. (This 'e‘ ;
ratio is < 1 if an error occurs.) é,
KA
The difference between the a and b plots reflects the choiqe of '
threshold. For the a plots, the gquantization threshold is set ‘”;f
higher (relative to the RNS range) than for the b plots. This B
results in lower DTW scores, both for similar and for different m
matches, shifting both histograms to the left and, in the case of )t:::'s‘
10-bit input quantization, providing better separation. With a ‘:;::::::
coarser input quantization (< 10 bits), the lower setting of the ::::‘;:‘::
threshold for the b plots begins to give increasingly better perfor- ,,?
mance relative to the a plots, :‘
3%
/
3.4 INPUT QUANTIZATION :"!:!::.
hpisyncy,
Although the A/D converters in our input preprocessing system j!_‘; ‘
yield 16-bit speech samples, it has long been apparent to us that 16 ? .
bits are not necessary for acceptable word recognition. Among the ' X A‘
advantages of shorter samples is a reduction in the range needed for i:""‘u
autocorrelation analysis in RNS. PFowever, since the autocorrelation :‘{::’:.
vectors are then normalized and scaled before the local distortion E;i,i;igz
computation, the range needed for the latter is not affected. f;:i‘”
We have looked at reducing the input guantization from 10 bits
to 8, 6, 4, 3, and 2, and also at increasing it to 12 and 16. We
expected that a coarser input quantization, i.e., fewer sample bits, -
;T‘ would lead to lower distortion values, hence to lower DTW scores and T~
:E: a left-shift of the score histograms. This is shown in the results .':
:.:E of the simulations. Pre-emphasis was employed in all simulations. : '
) 0

T We report on a subset of the results. J.'f'

; oy ‘K‘l-i,41$ﬁ‘.ﬂl’ IR \.‘h.‘p"". ‘L‘]".“‘
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Plots for 8-bit input guantization are shown in figures 3.4a
(RNS {23,11,2}) and 3.4b (RNS {13,7,5}). Comparison with figures
3.2a and 3.2b for 10-bit quantization shows a slight shift of the
histograms to the left for the cocarser input quantization, but no
apparent loss in discriminability between correct and incorrect

matches.

The picture changes somewhat when the quantization is reduced
to 6 bits. Again, the reduction in sample size results in a left-
shift of the histograms. For the RNS {13,7,3} (figure 3.5b) the
separation between scores for matches of similar words and matches
of different words remains good, but for the other RNS {23,11,2} the
natural threshold setting T = p; = 23 is now too high relative to
the reduced local distortion values and produces a considerable
overlap in the resulting DTW scores. Both simulations resulted in a
single recognition error, failing to distinguish "“three” from "two”
(RNS {23,11,2}; test = "three"), and "lima" from "tango" (RNS

{13,7,5}; test = "lima"). 1In both cases, tie scores resulted.

Figure 3.6 shows histograms of DTW scores for 4-bit input quan-
tization. The overlaps of the histograms for different and similar
matches are now considerable, esgpecially for the RNS {23,11,2},

This overlap leads to confusion in the word recognition process,

Figure 3.7 is a plot of the number of recognition errors
occurring versus the input quantization for all ‘simulation runs.
Two curves are drawn, one for the RNS {23,11,2} and one for the RNS
13, 7, 5. A recognition error is counted in the error analysis of a
simulation run whenever the selected text for identification of the
test input is incorrect or whenever there is a tie in DTW scores

between the best guess and the next best guess.
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We have used two other types of recognition criteria for
comparing different simulation results. The first is called the
minimum discrimination ratio, rp,. For each test utterance j we

define a test discrimination ratio, ry, by

‘ 0 if we = 0 or ws < c3 I
]

: ) ) ‘ (15)

l Wj/Cj otherwise ‘

where ¢ is the best DTW score gog a reference with correct text
and w3 is the best DTW score for a reference with incorrect text.

The minimum discrimination ratio is defined by

rm = M%n ry. (16)
]

A plot of rp, versus input quantization is given in figure 3.8.

Two curves are drawn, one for the RNS {23,11,2}, and one for the RNS
{13,7,5}, showing the former gives better worst-case discrimination
if the sample size is adequate (8 bits or more). No meaningful
comparisons can be made when the quantization is 6 bits or less, so

the curves are plotted only for sample sizes greater than 6.
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:;; The third criterion used is an ensemble discrimination ratio :.,:::,:
i . . . o, '\'q
'iqf re. Since some ¢y will be zero, we cannot define an average Eg::ﬁf,
iy N
: discrimination ratio. The ensemble discrimination ratio is defined 2
58 by
o
Lt
)
l:gE
v
WF = R .
re = (Y wyj)/( 7 cy) (17)
] ]
‘1; !‘T;év;t
y Xa
te¥ DY M
<t 'GQ.’.G“
) ignoring cases where no score is computed for a second-best text, Z,;f,:,
L] o
. : . : A
“hye e.g., "foxtrot". Again, this statistic is not meaningful for sample Pty

sizes less than 8 and has been plotted in figure 3.9 only for input

. quantizations 8 to 16.
OQ.
A
hL To summarize these results, the DTW score histograms show
o excellent separation between scores for matches of similar words and "
oy s
\:. those for matches of different words so long as the input quantiza- g:
¢ M,
w:., tion is adequate (8 bits or more). For coarser quantizations of the 1":
o s S
o speech samples the two histograms exhibit more serious overlaps, A
. giving rise to recognition errors (exceeding 10% for 2-bit quantiza- “f;_’:t
U iy
‘.;:E tion and the RNS {13,7,5}). s
i'| {;
R s
.A’Q l. 0'?‘
R 3.5 ORDER OF THE AUTOCORRELATION MODEL F AN
iy
i.‘: The selection of the order of the autocorrelation model is ’
e S
;a{« important. It should be set as small as is consistent with good N ;
f?a' recognition performance, for both the size of the reference library f:* ,"
and the time required for performing the local distortion calcula- "
7 R
$z tion are approximately linear functions of the order P, In this .§§:
? % '}
. section, we report on the results of simulations carried out to ,: '
t
9 investigate the effects of changing P, i.e., PORDER., 1In general, as \‘
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w
;ﬁ? PORDER is decreased, local distortion values decrease and, hence, g;;

‘ the DTW scores are lower, shifting the histograms to the left. $ §
;Q, Pigure 3.2 showed the DTW score histograms produced when b,

- PORDER = 12, Pigures 3.10 through 3.13 show the effects upon the
f}‘ histograms where PORDER changes from 12 to 10, 8, 6, and 4, %

) respectively. Figures 3.14 and 3.15 show the effects of increasing ;___
K PORDER to 16 and 20, respectively. For the RNS {13,7,5), separation aﬁd
“\ between histograms for matches of similar words and matches of :q;’,;
§§ different words is best for PORDER = 12, although separation deter- @j&
vt iorates only slightly for PORDER = 10 and 8, For the RNS {23,11,2) .
;ﬁ% separation is best for PORDER = 12 and PORDER = 20, but again the :;&
%$ overlaps for PORDER = 10 and 8 are small, and these appear to be %%%
ﬁg acceptable choices, gh#
Zig In the error analysis of the simulation runs, recognition &;gi
?k' errors occurred only when PORDER = 4 for the RNS {23,11,2}. For 'sgg
ﬁh' this single case, three recognition errors were counted. a%g

Figure 3.16 is a plot of rp, versus PORDER. Two curves are ?g&
shown, for the RNS {23,11,2}, and the RNS {13,7,5}. This indicator i:.tgf;‘,
of worst-case performance is optimized for the choices PORDER = 12 ggﬁ
and RNS (13,11,2}., Por the other RNS {13,7,5}, r, is largest for fij

; PORDER = 8. e’
o it
0 e
.;? Figure 3.17 shows plots of r, versus PORDER for each of the (R

- two RNS employed.
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To summarize these results, PORDER = 12 seems to give best
recognition results among the values tested, but 10 and 8 seem to be
adequate for good word recognizability. They also offer a savings
in library space, processing time, and the range required for the

autocorrelation analysis if done in RNS.
3.6 RECOGNITION PERFORMANCE IN NOISE

The RNS implementation of a DTW-based speech recognition system
performed well even for gquite coarse speech input quantization
levels. This led us to consider whether this implementation might
perform well in the presence of additive noise in the speech
sample. To study the performance in a noisy environment, normally
distributed (zero-mean) noise random variables were added to the

test input speech samples following utterance detection.
3.6.1 Noise Model

Following detection of an utterance in the test speech input
data stream, the sample variance is calculated for the set of
samples comprising the utterance. This determines the noise stan-
dard deviation, 3,, used to obtain the desired signal-to-noise
ratio (SNR). Uniformly distributed integer variables are converted
to floating point representation and used to construct normally
distributed random variables, with zero mean and standard deviation

one, by means of Rnuth's algorithm P [8]. Premultiplication by s,

vields normally distributed random variables with zero mean and

standard deviation, s,. These are added to the speech input

K

;;é samples of the utterance, giving the desired SNR.
.
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If pre-emphasis is selected (not advisable when there is much

noise present), it is applied after the addition of the noise varia-

o Ay

?

bles. Normalization of the test samples then proceeds, followed by

the usual autocorrelation analysis to produce the test autocorrela-

-
"

tion vectors used in the computation of local distortions.

o

‘-

o xS

3.6,2 Simulation Results

™

In this section we present results from simulations run for

o

several SNRs: 10, 15, 20, and 30 dB. Simulation runs have béen made

J both with and without pre-emphasis of the noise-corrupted speech

. samples. Addition of noise shifts the DTW score histograms further

. to the right. If much noise is added, pre-emphasis becomes inappro-
priate because the noise dominates the residuals left from the

o first-order differencing. This is seen in figures 3.18 and 3.19 for
simulations with and without pre-emphasis, respectively, with addi-

: tive noise introduced at a 10 dB SNR. (Compare these to figures 3.2

; and 3,3 for the noiseless case.) Pre-emphasis of the speech

4 samples, formerly very helpful, is now destructive. In the absence
of pre-emphasis, some separability still remains for the RNS

r. {13,7,5} with lower threshold (figure 3.19b). (Only a single

; recognition error resulted for this case; it is the same single

b error, recognition of "three" as "two," that resulted in the

noiseless case of figure 3.3b.)

With the higher SNRs 15 dB (figures 3.20 and 3.21) and 20 4B
(figures 3.22 and 3.23), better separability is retained between
histograms of scores for matches of similar words and those for
matches of different words. At 15 4B SNR, recognition is still
better if pre-emphasis is not employed, but pre-emphasis of the

L speech samples may improve the separability between histograms at

20 dB SNR.

» 71

) , Y AR ~ T T Tt G, O
Dare vl 4 ENNAY ST A "x '('-\"" "\. SQ - “" o, "*,. A SRR RNt L
BRI NS S S Ps: & g s & G N "-ﬁ‘-i“- ""“ -V e v:f-.- 'x-" LA LRV S

‘ H. 't'l -!:\:"’0 l‘ctl‘o. 't\' o,' ) ‘o. Nttt

RN



[_____] DIFFERENT
KKN\Y smiLar

PERCENTY

DTW SCORES
a. RNS {23,11,2}

:] DIFFERENT
RNNN] smiLar

PERCENT

ﬁ&@%

DTW SCORES
b. RNS {13,7,5}

2.3 -4 4,

Figure 3.18., DTW Scores with Pre-Emphasis: ; = .95,
10 Bit Samples, Normally Distributed Noise SNR = 10 dB

72

‘ g A . LAY % U3 )
OO t ) ‘ (T 5 . 'l REXY)
‘ 0 !: ,1 6.0'5\ “o 0 ; 659 4 v’l. 0‘ (W) .1: X ,.411:: ": ‘.ﬂ' . Tt :
Y ‘v a’ AY N (" “\ > tipind .

. " | ’g"’ ¢ " L .‘:" v

4';l‘gu‘_ *i,"ﬂ .



‘l‘l
v 100
2
! % |
. ::] DIFFERENT
' 80 |- J SIMILAR
v AANNY
Ly
!f"; 70
!:{,
':'k’( 60 -
' e -
' 5
g 30 |-
K g 40 |-
i
0 30 |-
“, 20
°T g——. A_l _ﬂ l—l H
1
m [
t ]
2 0 -2 6.7 T8 8.9 .91
e DTW SCORES
t.k.
' a. RNS {23,11,2)
8
R
4
N
s, 100
90 |-
o (] oiFFeRent
L)
L} 80 |-
KL RSNN  siMiLAR
]
.'r';“ 70 |-
iy
. 80 -
Y
é o 50
[ & F
(R4’ N
i) w0 |
i
9"5 30 |~ —
20 |- [ ]
?ﬁ
:gw 10 -
‘&’t‘ ° ~
"% - 2.3 .34 45 5.6 6-.7 . .

7-.8 .8-.9 8.1 >,

d DTW SCORES
0 b. RNS {13,7,5) o
‘. el :N::‘.“
; ’ "'.“31
»Yy N
g0, ‘:':"*
e Figure 3.19., DTW Scores without Pre-Emphasis: y = .95, 'i.’_
- 10 Bit Samples, Normally Distributed Noise SNR = 10 4B —
. &
Y &5:
i (
X 73 l::.“
e » \
; e

T Ry L e A -
B r_n'? :‘» o | :z::.‘ '.H 5 ;:‘_ 3

s st e i SR

()
P » .’ .
: o8 n l ,a pa |.l 0
i a0y ' 30 "
'-“ ‘ “ ’ af G 2 "."‘ ..‘ Y .’i. 5'. tln.‘ A! ¢ "".1 ."?.l:‘ 4, W8, G"\'-. ‘ﬁ“‘n‘ ‘.‘"

rl" "‘«’l‘ [ ‘.. ’a .




Y s,
LR 'y . ¢ l“
. i,
Jeee]
v
{ AN
e
;'Z""f?
‘ ;ﬁ:‘;?
o £t
s
b
i
100 S
. ol s
W NT (i
i 8o | e
" \\\\ SIMILAR L
‘ [ICALN
’ 70 |- '#V‘r
: 60 s
” - e 1.4
R 5 £
A o 50 |- B
e [ O
e = 5
R 40 - Pyt
30 |- .
[} o .
.:b;i‘ 20 =
b
L]
o 10 |-
S 0 L |
. 3-.4 .6

0 0.1 1.2 J-8 89 91 1.

s DTW SCORES G !
;OQ:! .‘,g;e:
LOT ¢ R
ot a. RNS (23,11,2) el
) o
o vt
" AN

100

Sh
:':'i‘ 90 |-

{.,n: [} oiFrenent
X }
v&.}f, 80 |-
-,3‘;2 NNSN siMiLAR
70 |-
;!\"’ - 60 |- .ﬂ\,;.!.v
Ve & o
B 50 |- LR
RS e Ry
""'“ =.‘ i "‘:‘i
f 0 |- — e
. o Myt

30 |-

s 20 |

Nyt 10 -
.i‘:';‘ S
i . - N

o 0.-1 .12 .,2-3 3.4 4.5 .56 6.7 .7-.8 .8-.9 9.1, >1.

SIS S,

Y DTW SCORES '5'-.'
A X
0 b. RNS {13,7,5} Py
e 5y
XN X0
Figure 3.20. DTW Scores with Pre-Emphasis: u = .95, E LG

10 Bit Samples, Normally Distributed Noise SNR = 15 dB o

L ' ..
N i:::t:"
[ E WIH
", 74 l.:".
Ae i%!t.'
. W
‘l:jt

} "n b SRRy o\“ '\‘l.:
g *ws.w,-‘. A o
R .

i M A ’A ¢ 'Q 2 g0 N ' ' ‘
PRI oy '.,:,*.'aq'f‘-c AU R LR N ' 5 ' 'i 'h



100
o - [C___] oiFFerent
K °r NN SMILAR
g 70 |-
' 60 |-
'S
F 4
o so |-
: [
¥ w
' & a0 |-
' 30 |- S
‘ 20 | s
: [ § i\ H H H
B
: o N N ] ssﬂ _J l 0 o
. 0 0.-.1 8.9 9.1, 1.
: DTW SCORES
a., RNS {23,11,2}
.}'.‘
X
100
o 90 - ) oFFeRenT
: $0r RNSN]  SMILAR
:
¢ 70 |-
.4
60 |
[
A z
:‘ 3 50 -
-
.: & 40}
. Q
Y 30 -
. 20 | §
: N
. 10 | § l—l
: LN N Nl o] 0
' 0 0-1 .1 2.3 3.4 45 5-6 .67 7.8 .8-9 .9.1. »1.
} DTW SCORES
. b. RNS {13,7,5}
i
"
1
Figure 3.21, DTW Scores without Pre-Emphasis: u = .95,
: 10 Bit Samples, Normally Distributed Noise SNR = 15 4B

75

k] neva i
R “‘h‘..'aow. U AX e‘h
- .,h‘ p. ‘s ,‘r“a

S . ke A N ¥ ‘. 't PO ) A0 ) !
b LA (S n-.'»'t‘t‘n P .k‘»a‘ﬂa,‘a",‘o,o.‘o.uu kD vh ».u O 'a‘ 't) b'q " \‘\
o Y e ’(l'i l"*"‘ fa"t"‘.‘ Mttty “' " “' ) 0"‘ L ‘P( " W
. - 5 g g d Ni g Syt ’o‘b’ ' ¢ N :

‘ f"‘:‘.. o: "'"" ""”“" “ " ".',t. f‘ :"; ‘ s',o '. b
K M ,



l MCIA-24 I

100

‘h'! 90 |-
W (] owFeRent
LR
W 80 |
. RNNN  SMiLAR
! 70 -
60 -
-
z
o o so|-
* [
TN W
N a

s 1L

-

0 0-1 .1-2 2.3 .3-4 5 5.6
E DTW SCORES
n a. RNS {23,11,2}
K
i e
100
Y
i 0 | [] oFFenent
1}
Rt S
:: o |- NN  SMILAR
z' 70 |-
’, 60 |-
it z
i} S s0 |-
it P
N w
');{‘ 40 | —
20 |
e 20 |
‘o Nﬂ m{_] ._l l |
- 0 0.1 1.2 2.3 34 4986 .8 91, 1.
N DTW SCORES gt
A LN 3
o b. RNS {13,7,5) e
. USR]
= t:,;iz."
G o
. Figure 3.22. DTW Scores with Pre-Emphasis: y = .95, O
- 10 Bit Samples, Normally Distributed Noise SNR = 20 4B -
, :?l:L:i
i » t’.‘
, gl. 0
76 XA
i
ekl
::'-,;,v
4'_',"'1« an.u,& , v .‘ ,‘ ’Qy'l 11’| 1, .b. ’ .'I“I ) " %81 2Ol ‘1‘0’ h "- '\ Y O W, \ ‘.- .gaw ‘;q‘;’;;
R “":-n'ﬁ‘;'-\%':' R AN R SRR
P " l l l K V. O A '
, " ‘o ' ",g l. ‘,"‘k " :" . ,’0:.‘. 0'” 'l’ . 'l‘“; .~, 5,, ' ':t ,,t ‘0 :ﬂ.' (,“! t‘a""
; LI P




N
:"’:’t.r
100 'Q;:fa:-"
L] N ‘\‘ :.
e s
¢ s
% - ] oiFFerent e
0 ] -
NS\ simiLar iy “
70 - ditiet
'!:;'!h
60 ey
- stagh,
& Tt
: g —
it o G‘;,&e;;
I “.'g,.* i
" )Qr@:' i
ot N
¥ ;‘fﬂ*ﬁ’!.
< X
| § e
@t ST
! 1.2 .23 34 45 56 6.7 .7-8 .8-9 .91 >l
" DTW SCORES
w'\ LI
[}
a. RNS {23,11,2}
B
100 :
90 |
- [} oirFerent 7:5322"‘.»
i T
ot} 80 = 7‘ ‘5
:ﬁ. NSN]  siMiLAR B:::‘::
4:: 70 - t.:l;.:.é
o i
L 6o |- 3 ‘*»Q’&'v
z -
g $0 |- ;‘i »
0 « XA
u s
N 40 ey
o 00
R
L e
N N
‘ ¥, *
N
g 10 § W
t = \ l—l ‘:iz‘?‘-:s
; N W1 o] s
0 0.1 4.2 23 34 A8 56 67 .78 .89 91 >l M‘: i
. e
- DTW SCORES Bt S
L7 O} O
Ly ...'.‘:
o terti
o 't':'a"-
S .l"’i'\.
' Figure 3.23, DTW Scores without Pre-Emphasis: j = ,95, teye
10 Bit Samples, Normally Distributed Noise SNR = 20 dB TR
l.‘:l.g'
DoJOM
'\'l.t'i
;‘ 77 .'.I.i"
() Q“ 1,
J te by,
Gl
89y

aik ok g g Al A AT R IGR DY TRl
e ey “sﬁ"«:"o VERAN R
S R e \}

NOND RO CR ST L LRV E S TS CL O P P 0\ VY ‘l..i'?
e N R R A R
) 1 A ‘ ‘

v ) i;||wn‘pu. oW, % \ . 2
UMM M s K * AR N AP A : y \ (AT P T R s AR NN
AR AN Y et s T X I I N T e O A D D Tt




when the SNR is 30 dB, the separations between score histograms
(figures 3.24 and 3.25) are comparable to .those obtained when no
noise is present (figures 3.2 and 3.3). Pre-emphasis again is
definitely helpful; no reccgnition errors resulted when pre-emphasis

was used.

Table 3.2 lists the number of recognition errors counted in the
simulations versus the signal-to-noise ratio applied. Four columns,
corresponding to the four cases (with or without pre-emphasis,

RNS = {23,11,2} or {13,7,5}) are shown.

Table 3.2

Error Analysis for Performance in Noise
Number of Recognition Errors

with pre—-emphasis without pre-emphasis

SNR/ RNS {23,11,2} {13,17,5} {23,11,2} {13,7,5}
10 dB 16 18 3 1
15 dB 9 3 1 1
20 4B 3 0 1 1
30 dB 0 0 0 1
® 0 0 0 1

To summarize these results, the introduction of additive noise
produces overlaps in the score histograms for matches of similar
words and matches of different words. For the RNS {13,7,5) without

pre~-emphasis, some reasonable separation is retained at an SNR of
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10 dB or better, and recognition performance, while deteriorating,
is better than might be expected, especially in light of the

marginal performance of LPC models in noise.

3.7 COMPARISON OF SINGLE-SPEAKER AND MULTISPEAKER PERFORMANCE

Multispeaker recognition is difficult with the present config-
uration of the speech recognition system. This is, in part, because
utterance detection has been treated strictly as a preprocessing
function of the system. All normalization of sample values to
compensate for variations in speaker dynamics, microphone placement,
system gain differences, etc., takes place after an utterance has
been detected and its beginning and endpoints have been defined. 1In
actual practice, however, some normalization may be required before
the utterance endpoints are fixed. Otherwise, there can be consid-
erable variation in the length of an utterance of the same word from
one speaker to another or from one recording session to the next.
Normalization that takes place after utterance detection does not

correct these discrepancies in utterance length.

Table 3.3 gives the utterance lengths in segments or frames for
two testsets produced by speakers different from speaker A, who
produced the database (table 3.1). Comparison of the lengths shows
some striking discrepancies between productions of table 3.3 and
those of table 3.1. For some testset words, e.g., "four," "five,"
and "foxtrot," there are few or no counterparts in the library
produced by speaker A comparable in length to the testset utterances
3 of speakers B and C. For this reason we have loosened the global

. constraint, g, set at 9 in all previous simulations to larger values

K for simulations with different speakers.
R
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Simulation runs were performed using the RNS {23,11,2} with : :'«
: input quantization at 10 bits for each of the testsets for speakers ":;
B and C with the global constraint set at the values 9, 12, 15, and ::.é-
18. The histograms of DTW scores corresponding to matches of _"T"
similar words and matches of different words are shown in figures : l‘|: :
3.26 - 3.29 for the respective settings of the global constraint. ,.‘:\:‘;\E
In each case, the a plot shows the results for speaker B, and the b b .’a-;::
plot shows scores for speaker C. _
R
The DTW scores are relatively high for all cases, and there is E}§%{;
considerable overlap between histograms of scores for matches of ;:::{':‘

similar words and those for matches of different words, making _ T
correct identification difficult. This probably reflects, in part, "2
the decision to treat utterance detection as a preprocessing func- ':)-'%i
tion. Better separation would be expected if normalization were d\k’ )

applied prior to the utterance detection. Other measures that might =
improve separation include the use of more than one speaker in the ,:'\,:I
database used for constructing libraries, and relaxation of the &:“L:}
endpoint constraints used in finding the DTW path. (The endpoint ::N :‘w
constraints applied in all simulations require the path to pass ‘__,:
through the points (1,1) and (m,n), thus insisting that the first '.f,";"‘.’,
test and reference frames be matched and the last test and reference ::z,':.f,
frames be matched. This constraint may be inappropriate in ‘:::f'é:
situations where the utterance endpoints vary considerably from .‘K“.._ '
speaker to speaker.) C'_C. ‘f
ot
Wl
Table 3.4 contains a summary of the error analysis for these :‘
simulation runs. The column for testset B {(or C) shows the number ———y
of recognition errors resulting when the testset of speaker B (or C) _f:.;:: B

is used with the library constructed from utterances spoken by r:‘,::-"::iy
\ speaker A. '.C
' N: ‘:r
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. 3.8 DTW PATH COMPUTATIONS AND THE EFFECTS OF OVERFLOWS —_
s gty
,i:‘ " . _‘
4 Wt
:c" As discussed in section 2.8.3, the DTW path ..mputations can be A §§
() i L
Wy successfully performed in RNS if the local distortion values are ";
" first quantized to two or a few levels. The revised shortest-path o
b . . . . , s
e computation was given in section 2.8.3. Two types of potential QQ:

2
Ql el

overflow must be considered. First, the magnitude comparisons of

. \
K steps 3 and 4 are to be performed in the largest residue channel. :t.‘g::
o An overflow results if the difference, in absolute value, between o
EA e
;:: the cumulative path distances under comparison exceeds half the s::::r:
B ‘l‘
4:»: largest modulus employed. Second, the cumulative distances them- \:::::ia
‘5’} 450
= selves are represented by residues in all channels used. An over- XA
s flow results if the cumulative distance for the presumed best path 2
";“* exceeds the range of the RNS. This is a serious error, generally
"".
‘1 leading to a recognition error, for the resulting path score is much
55 \
k lower than its true value.
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Let us consider the second and more serious overflow possibil-
ity. If we use the weight function of equation (8), the cumulative
cost for any path cannot exceed the number of reference frames.
Since the longest utterance in our test library consists of 104
frames, an RNS of range 104 or greater suffices for the shortest-
path computation (under one-bit quantization of distortion values).
Hence, for an RNS composed of the two prime moduli {13,11} no over-
flows of this type can occur, but for an RNS composed of the two

moduli (11,7}, overflow may result.

The first and less serious type of overflow is much more likely
to occur, and care should be taken to ensure that the first residue
channel is of sufficient size. Table 3.5 shows the number of errors
of the first type resulting for various choices of two-modulus RNS
for the DI'W path computations. In all cases shown, the distortion-
function computations were performed using an RNS composed of the
three prime moduli {23,11,2}. Quantization of the distortion values
was performed as in figure 2.6 to a single bit (match or no-match)
using a threshold value T = p; = 23. The last column of the table
shows the number of recognition errors for simulations performed

using the 37-word testset.

For the last two RNS, {7,5} and {5,3}, the RNS range is ex-
ceeded much of the time by the cumulative distances. The results
displayed in table 3.5 support the hypothesis that little harm
results from occasionally overflowing the largest modulus in the
path comparisons, provided that the number of overflows is not
excessive. No degradation in recognition performance was observed
until the larger modulus was reduced to 11, when the number of
overflows exceeded 9000. No overflows were observed when the lérger

modulus was 19 or greater.
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", Table 3.5
0 Number of Overflows of First Modulus and Recognition Errors

k. for Various RNS Choices for Path Computations with Two-Level
Quantization of Distortion Values

Al Moduli Number of Overflows Recognition Errors

s

o 23,19 0 0

. 19,17 0 0

! 17,13 233 0

R 13,11 2,587 0

K 1, 7 9,113 1
7, 5 108, 394 34

Ll 5, 3 265,530 36

R

&

!

For a hardware implementation the two largest moduli of the
B three employed for the distortion function calculation can be used .

to form an RNS for the DTW path calculations. The choice of RNS

&. Y

‘Q” {23,11,2} for the distortion calculations is safe from this point of

. view; the range of the RNS composed fram the moduli (23,11} is

.\

{s sufficient to avoid all serious overflows and to avoid less serious

{f overflows most of the time. The choice of RNS {13,7,5}, however,

$

N entails more risk, as the range of the subset {13,7} may be insuffi-

o cient. Overflow errors of the first type are likely to occur too

)

&l frequently.

o

R

K, Table 3.6 presents similar results for three-level quantization

= of the distortion values (using the quantization shown in figure

"

ﬁ' 2.6, with thresholds set at p; = 23 and pjyp) = 253). Again the RNS
L]

o) {23,11,2} was used for the distortion computations.
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Table 3.6

Number of Overflows of First Modulus and Recognition Errors
for Various RNS Choices for Path Computations with Three-Level
Quantization of Distortion Values

Moduli Number of Overflows Recognition Errors
23,19 0 0
19,17 0 0
17,13 360 0
13,1 4,341 0
"M, 7 15,188 1
7, 5 178,504 36
5, 3 344,788 36

Histograms of DIW scores are shown for some of the simulations
in figures 3.30 to 3.35. The a plots illustrate two-level quantiza-
tion of the distortion values, and the b plots show scores obtained
for three-level quantization. PFigure 3.30a is identical to figure
3.2a. PFigure 3.31a is similar: there is a slight shift of the his-
togram to the right for similar words. This shift becomes more
pronounced as the second RNS is made smaller (figures 3.32a and
3.33a), but the histograms for matches of different words are
largely unaffected. However, when the RNS is reduced to {7,5}, the
effect of overflows in the cumulative distance calculation is felt,
shifting the histogram of scores for matches of different words down
to the left (figure 3.34a). When. the RNS is reduced to the pair of
moduli 5 and 3, both histograms are shifted far to the left, as
almost all path scores have overflowed the small range (15) and been
mapped into low values (figure 3.35a). Correct recognition is now

out of the question.
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3.9 EXPERIMENTS WITH A VOCABULARY OF SIMILAR SOUNDING WORDS

Recognition results obtained using the 37-word database des-
cribed in section 3.1 have been good, reaffirming the findings of
earlier simulations based on an 11-word database. We expect these
results to be valid for much larger databases, but have been unable
to confirm this because of the large amount of computer time

required to run the RNS word-recognition simulations.

We believe that matches of different productions of the same
word will continue to exhibit low DITW scores independent of the size
of the database used for building the reference library. The real
impact of an expanded database arises from the increased likelihood

that there will be other words different from the test input but

close enough to it in sound to produce low DIW scores when matched

with the test. This has not been tested by the 37-word database, v‘.‘.‘;: ‘.
since the 26 communication codewords were selected presumably for i ::::
their properties of distinctness. :i y %lg
Nl

In order to study the performance of our RNS implementation of

a DTW-based word-recognition system when the database vocabulary \ ..:‘:
contains similar sounding words, we have created another database, .\ :- X
the rhymes database, containing 27 words. Five productions of each ) _V,
word were recorded by speaker A to form a database for reference “:
library construction. A sixth production was recorded to serve as E\i{ ‘
test input. The number of frames produced by the utterance segmen- ™ 3,
tations are shown for all words in table 3.7. ;}L 51
AR

98 -':

KR

1 y - » - - » A - »
A NS { ' oo LA A s
; Ly _‘r:':;:w:.- "-ﬁ::-"_"(_ Vg
et (e LN P MO N
e ) ) \) v , o)




Table 3.7

Number of Segments Produced for Five Reference Productions
and One Testset Production for Rhymes Database Segmentations

Word Prodni Prodn2 Prodn3 Prodn4 ProdnS Test
mack 43 41 46 44 45 49
man 61 67 73 65 67 59
mat 54 48 47 46 46 55
mech 57 46 46 44 44 40
men 56 57 54 58 54 56
met 44 44 40 42 43 44
mick 47 44 45 47 47 S0
min 55 53 55 54 54 5t
mitt 55 51 53 47 48 53
pack 48 48 46 46 36 49
pan 52 50 56 S5 57 50
pat 51 53 51 46 44 50
peck 42 36 40 37 40 42
pen 57 54 52 52 53 53
pet 47 44 46 46 42 38
pick 42 42 44 42 42 39
pin 48 50 50 53 52 44
pit 47 46 49 47 39 45
sack 55 39 52 63 58 68
san 70 56 72 63 75 70
sat 44 49 60 60 62 58
sec 72 55 64 49 72 56
sen 63 61 69 70 72 64
set 58 53 54 41 43 54

sick 61 62 62 52 54 61

R 4,'\ sin 66 48 67 62 64 57

e sit 49 51 52 49 53 53

59
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Each word of the rhymes database has six near neighbors, e.g.,
the word "mack" is a neighbor of "man" and "mat," differing only in
the terminal consonant; of "mech” and "mick," differing only in
vowel sound; and of "pack" and "sack," differing only in initial

“consonant.

Simulations were run with a library constructed from this data-
base, with PORDER = 12, 10-bit input quantization, and pre-emphasis
of the speech samples. The histograms of DTW scores for matches of
similar words and matches of different words are shown in figure
3.36a (RNSs {23,11,2}) and figure 3.36b (RNS {13,7,5}). The scores
for matches of similar words are somewhat higher and more spread out
than before (cf. figure 3.2). The scores for matches of different
words are lower, as expected. Their histogram is shifted to the
left (relative to figure 3.2). Separation between histograms for
matches of similar words and those for matches of different words
has deteriorated considerably, but still is sufficient to hope for
reasonably good performance of a word-recognition system based on

larger vocabularies.

For the simulation employing the RNS {23,11,2}, a single recog-
nition error resulted. The test input "met"” was confused with
"mat,"” both reference words returning the same normalized path
score. For the simulation using the RNS {13,7,5} no recognition
errors occurred. The histograms of figure 3.36 show comparable
performance for each RNS. For the RNS {23,11,2}, 71% of the correct
matches have lower scores than 96% of the incorrect matches; for the
RNS {13,7,5}, 70% of the correct matches have scores lower than 97%
of the incorrect matches; for the RNS {23,11,2}, 96% of the correct
matches have scores lower than 89% of the incorrect matches; for the

RNS {13,7,5}, 97% of the correct matches have scores lower than 84%

of the incorrect matches.
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SECTION 4

RNS-SYSTOLIC IMPLEMENTATION

Two systolic processing arrays are described in this section,
one to compute the correlation values of the individual frames of
speech and one to perform DTW. Both utilize RNS. The linear array
for correlation computation has been discussed in [1] but is
included briefly for completeness. The elementary cell in the DTW
array presented here uses the square of the Euclidean distance as a
distortion function, and the guantization of the distortion values
is done by mixed-radix conversion. The underlying systolic
configuration was originally conceived for general dynamic

programming [9].

To provide a very rough estimate of the upper limit of hardware
complexity of the DIW array, layouts of the reduced logic expres-
sions of the essential functions were examined using available CAD
tools for simple programmable logic arrays. Projections of hardware
complexity and throughput based on a careful state-of-the-art VLSI

design are extrapolated from these results.
4.1 A SYSTOLIC AUTOCORRELATION VECTOR COMPUTER

Let x(m), m > 0, be a set of uniformly sampled values of the
speech signal. This sequence is divided into finite, connected
portions that represent separate utterances; these utterances are

compared, one by one, with every utterance in a library.
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;j From a given test utterance we construct overlapping segments

i of M samples; the shift between consecutive segments is denoted A.

; Typical values of M and A are 180 and 80, respectively. The %-th

" segment (or frame) is denoted x(z)(m), 0 <Cm<M- 1. From each

1 -

? frame we define an autocorrelation vector r{l) = (rp(l), oo

. -

ﬁ ro(z)], where P is the order of the autoregressive model,

¢

v according to the formula

N

€

ﬁ M-1-n

K rn(l) = S‘ xm(l)xm+n””)- (18)

I m=0

K The order that we use is P = 12,

S

‘ 4,1.1 Systolic Array

9]

. Since frames overlap, multiple correlators are required so that

:: the correlation vectors can be computed quickly. With M = 180 and

o A = 80, at most three frames can overlap. Three correlators are

. needed. This is illustrated in figure 4.1, where the input switch

t

P selects samples from the appropriate frames.
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CORREJ.ATOR ) o
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e X, X % -t : o— connezLATon L e @

CORRELATOR > o)
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x5
3
Z2

x i
’ Figure 4.1, Autocorrelation Computer l",i

Each correlator can be implemented with the linear systolic M.’&q't‘

e W~

array shown in fiqure 4.2, where all P + 1 cells are identical. Two Vil
copies of the input samples for one segment enter the array, one at
A each end, with zeros interleaved. Computation begins when both

copies of x(; appear at the inputs of cell 0. The data then f &
proceeds, one cell at a time, through the array. At each time ‘.,;{S;r:!‘:

instant each cell forms the product of its two inputs and adds it to

the contents of an accumulator. After all input samples in the

segment have been used, each cell contains its corresponding

DR

coefficient.
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1IFn+1 <0
u lFC(n) =0
u,lFCi(n) = 1ORC,n) = 1

u{n+ 1)

0 IFn+1 < 0

s(n) + x,(n) x,(n) IFun) =Cyn) =0
s(n} Fuwn) =1,CM=0
x,() x,(n) IFCyn) =

(x,(n), C,(n)) —a — (x,(n-1). C,(n-1))

s(h+1)
(x(n=1), C,(n-1)) w— u(n), s(n) [— (x;(n). C;(n))

. i

fn)

s(ri+1)IFCyn) = 1
n) IFCyn) = 0

f(n+1)

. Pigure 4.3. Processing Element in Autocorrelation Array
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] 4.1.2 RNS Hardware Implementation
A )%
SN
-
If the set pj, P2, ..., Dy is used for the moduli of the RNS,
Ty .
1y then { versions of each correlator are required, each one operating
he
o, with arithmetic modulo pj. One RNS correlator is shown in figure
1) >
¢% 4.7. (The small squares are time delays used to impart the appro-
priate time lag to the data input from the right.) A more detailed
\ TS
ane design of a modulo P cell appears in figure 4.8. This diagram R{
g : . . )
‘»5} illustrates a modification of a cell previously designed [10]) for gu
A
\ use in a transversal filter. o
U O ]
. 4.2 NORMALIZATION 1S
by o
3 0
‘:51 The correlation vectors are normalized before they are o

processed by the DTW algorithm.

kﬂ: The normalized correlation vector r = (rp, ..., rp) is }_:
! ; s . e
%& obtained by dividing each component by rj. Since 0 < 'rn‘ < 'rg' -Rﬁ‘

for each n =90, 1, ..., P, all the normalized components lie bhetweenr

§?  plus one and minus one. The normalized values are then scaled and :4"5
f:' guantized to an integer between 0 and S, where S is the scale :
:$¥i factor. Then they must be encoded in the RNS used in the DTW. ;—\,
W (‘I )
*.
:fq Division by a variable number is too complicated when the :;J
2% numbers are represented by their residues; we must exit from RNS ;%i‘
'%3 for general division. A weighted (binary) number representation of ;f“
v all the rj, can be obtained by mixed-radix conversion so that the |
"“ﬁ division by rj can be performed. This division occurs only once for ﬁ::
*?j each test segment processed, while each normalized vector is used ::;-
32? many times in the DTW operation. fsi

-
-
N
-

iR A
‘I

: l}ﬁ,,,;, W



&5
A-T3. 211

0

(Xedo, f W

L g
[N 5N

7
| — O0— 3*1\‘

ttaly, oy

BINARY 0 ]
pr B

RESIOUE Al

{Tal,

Padtls
(Xembg, d L™ o XN
— gy

Figure 4.7. Systolic RNS Autocorrelation Computer

}

x>
Lol
]

ot
O

112

"‘{
-

-
'
-

' ‘\- WA PN 8e
.‘:*.n,u‘ I""::‘ \.,r-)'i, {‘, "‘I «Z »

t ) s ) s ;;.
ﬁ
R, L O0A 0NN ;'a‘ A ’l‘ e



w\l ll
A1
cl
- log... X,
R2
()
L— ZERO
DETECY
ADDITION MODULO (P-1)
1
‘I(.’
R3
COMPLEMENT
OUTPUT IF
INPUT = 1 s 9
ADDITION MUDULO (P) ‘ o—f—C p—
y 4
A4
[
r ~ [
($:C).(R\C)
= AND
A = OR
‘V
RS
r—-t—n
| |
+—1 re f
] |
b —J
$
N
[
=
o
4.0
)
s
WU
)
o Figure 4.8. Svstolic Correlator Cell Mod P
!. ;
-.:
4'.
" 13
")
)
- - ANy
” g = . On SN T AR CLERCE S -,."'~. CUEA AR
l"‘fﬁ'a» LR i ST Ry

) oG " "P
'c’,l,y Q,.’ M i ‘Q\'\,." ) \0,.‘, ‘( ""p"r x h'~.~‘ ‘ e a N AR .‘~ . ,W\vh 19.2%,08,7 .b?h‘\b’l..h.



by A block diagram of the operation is shown in figure 4.9. The
f correlation values are given in residue form with respect to the set
| of moduli used for their computation; each one of them is accompa-

) nied by a control bit which has a” value of "one" for ry and “zero"

;é' for rj, ra, ..., rp. The binary representations of the coeffi-
) . : . .
) cients are obtained from a residue-to-binary converter. The rg-

divider recoanizes ry by observing the control bit and is latched;

the other coefficients in the same vector are divided by rg. The

¢
fﬁ value of ry is updated every time a new set of coefficients appears.
¥
M3
W . . .
5 From the weighted-number representation of the normalized

coefficients the new residues can be readily computed by a table
KA lookup, which observes only the higher-order digits; for example, if

S = 15, only 4 bits are required to determine all the residues in

» the new RNS.
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iy 4.3 SYSTOLIC ARRAY FOR DTW COMPUTATION &
:':‘ o\
\'._:' A
X |§‘:‘.I
' The DTW algorithm computes the cost of the shortest —
”d (lowest-cost) path through a two-dimensional array of distortion '.ﬁ
‘i . 9
:’,t;‘ values determined by a pair of test and reference utterances. f::;::
7.
"|§l .‘:’:
‘\E'éz ‘..!’r‘
R LA
. Dynamic time-warping can be accomplished efficiently with a S
s two-dimensional systolic array. The reference and test utterances, iy
Dy a
:E:: represented by their correlation vectors r(j) = (rp(j), rp-1(j), '::;“::n
: - OQOG
::l eeer xol(i))y 3 =1, 2, ..., n, and 2(1) = (up(i), up_q(i), ..., !‘::::
0y ¥
N up(i)), i =1, 2, ..., m, respectively, enter the array as shown in AR
o figure 4.10. All data corresponding to one pair of utterances to be ; \
/ Fo
e compared lie on one diagonal and bear the same superscript. As the r_.\ﬁ
‘D.‘, '_.
¢ data progress throuah the systolic array each diagonal retains its f:; y
L ‘ 1
R relative position with respect to the others so that all cells on a ¢
‘«"';, given diagonal operate on an utterance pair at any given time (see k <
)
:::' figure 4.11), Observe that cell (i,j) always receives the vectors 2
'
::l. u(i) and r(j) in an utterance pair. !
.:b Y,
XY Since the path computations for each pair of test and reference ;,.
] 1 o
::: utterances will proceed as a wavefront making computations on -_\.r
D W,
_;s:‘ successive diagonals, the deletion of previously used distortion ;::_ .
1 €.
kA values allows pipelining to the extent that distortion functions '::;"
o associated with a number of utterances equal to the number of t,:.,- :
A L
g:. diagonals can be present at any given time, with the path o
Vg, o
,-:a:, computations being pipelined along successive diagonals, )."{;

&6 17
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The computation of the shortest path is carried out itera-
tively. At each time instant each cell computes the shortest path
from cell (1,1) to itself by observing the lowest costs of paths
leading to the four cells that precede it (according to type 3 local
path constraints), selecting the smallest one and then adding the
local distortion, i.e., the cost of getting from that cell to

itself.
At each instant each cell performs the following operations:

1. Computation of local distortion

P
dis = 1 lugli) = ra(5))?
n=0

Quantization of djj to d'jj to reduce the numerical

range requirement

Calculation of path costs

Ci,y=4a'ij + min(Cj_1,5-1, Cj-1,5-2)

= min(éi’j, d'ij + éi-1,j)'

Ci,j

The results of step 3 are then passed along to neighboring cells

for further processing.

For the computation in equation (20) to take place, the four
path costs must be available at the input of cell (i,3j) when the
cells on its diagonal are ready to compute. This is clearly
possible since the four path costs are on diagonals that have

already completed computation. In the physical array all data move
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,' horizontally or vertically, and diagonal communication--e.g., the :‘:'_.»
»,’ communication of cj.1,j-1 from cell (i-1,j-1) to cell (i,j)--is -‘:'-]\:
" done through cell (i,j-1). At each step on such a path, the data *}‘
"+ advance one diagonal. All data being operated on, or computed, Ny
: corresponding to one pair of utterances, lie on the same diagonal. QJ{
i é’g{:ﬁ
;‘?' From this observation, it follows that the distortion values on s‘-- ~"
- a given diagonal need not be available until the computational wave- TRy
J': front has reached that diagonal and this can be managed by the :‘.'
;. pipelined scheme already discussed for the distortion computations. ?E}:z
i Hence, the DTW can be completely pipelined, with each diagonal
Ry handling one pair of utterances. From cell {(m,n) the scores of the Srew
"‘ pairs of utterances compared will then emerge one-by-one, and the (\’
_ . entire process is readily pipelined. ",1

Figure 4.12 shows a typical cell in the DTW grid. The computa-

&% o &t
& T
‘{A: tion of Cij is done in two steps so that actually only three quan- :.}'.;
3; tities previously computed are fed to each cell (éi-1,j is the ::\:ﬁi
8 - WD
X minimum of Cj-2,j5-1 * djq,5 and cj_p 4-2 + di-1,j). Also, R
" €j-1,4j is not used by cell (i,j) but is passed along from cell ey
. [} ]
:'? (i-1,3) to cell (i,j+1). Similarly, Ci-1,4-1 is passed to the i::‘*5
1A . i
q‘:l‘ cell above, after it has been used by cell (i,j). Finally, Cj § is #&
J)
b computed and passed to cell (i+1,j). Thus, in addition to inputs ';i:’
4 r(j) and u(j), which get passed along after dij is computed, each - ae
xS ) - - 3%
, cell accepts four inputs and produces four outputs. :‘:{,::
- L ".:q'*n
“ ;’...'.
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\ﬁ 4.3.1 Local Distortion
L,
l
*é In our RNS implementation three primes are used for the moduli,
. and d1J is computed independently in each of the three residue
W19 channels. A block diagram of a serial, local-distortion computer is
' .
. shown in figure 4.13. It consists of a mod p subtractor-squarer, a
B ¢
Hd mod p adder and a latch. The mod 23 and mod 11 subtractor-squarers
- and adders can be implemented with PLAs; the mod 2 hardware requires
A
Sﬂ only two exclusive-OR gates, one for each of the two functions.
ey
s
21‘1
Lo
AN (ro - ugl
v MOD p 0t MOD P
L&) EEERENTH > ACCUMULATOR
e
s
R I

(g

”‘: 1A-72 967 [CHDTN

Figure 4.13. Local Distortion Computation Mod P

»
; : The U.C. Berkeley Boolean function reduction program ESPRESSO
oL was used to simplify the two mod 23 and the two mod 11 functions.
. The reduced Boolean logic expressions are tabulated in the
;i: appendix. Computer-generated plots of the PLAs corresponding to
f: the reduced mod 11 subtractor-squarer and adder are shown in

.: figure 4.14. Both PLAs have eight (one-bit) inputs and four
. outputs. The subtractor-squarer has 78 product lines and the aader
Ei; has 79 product lines, so the PLAs are of equal size. The dimensions
N : of the mod 11 functions are shown in figure 4.14 as multiples of the
:5f feature size X\,
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4.3.2 Mixed-Radix Quantizer

The two-level quantizer takes dij as input and lets the quan-
tized value d';y be equal to 1 if djj > 23 and 0 if djy < 22.

If dij has mixed-radix representation

djj = n3ppp1 + nzp) + nj (21)

then

‘ 0, if np = n3 =0

d'ij = (22)
l 1, otherwise

As explained in section 2, the condition n; = n3 = 0 is equivalent

to the pair of equations

dj3 = n; mod pj

[N
1

(23)
4;

j = n) mod ps.

A circuit that performs the quantization is shown in figure 4.15,
Since d'j4 = 0 or 1, it is identical to its residue in each class

since {0,1) is contained in every residue class.
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M For the RNS {23,11,2}, p; = 23; residues mod 23 must be reduced P
e mod 11 and mod 2. The latter requires no further computation. The e
\." d
;::' full quantizer can be implemented in the PLA shown in figure 4.16; \.":
1,0 2
A it has 10 inputs (five, four and one bits for the mod 23, mod 11, \r‘
'|" :‘-h\
f—.‘,!v and mod 2 residues, respectively), one output and 26 product lines. -;\3
& It implements a reduced Boolean expression obtained with Espresso. "’,‘
) . . . ‘-,(i
z The espressc output for the full antizer is tabulated in the ':)-".g-
4 P qu O %y
] '_;: appendix. :*:'-“‘;;"_
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4.3.3 Path Computation

P

Ly uh s

The determination of the minimums in equation (20) is performed
only in the largest residue channel. Figure 4.17 depicts a circuit

that computes éij and Cj4 in an RNS of three residues.
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The dashed boxes enclose circuitry that computes minimums. The
computation of each minimum requires a mod p; subtractor, a sign
detector, and a selector. The selector is trivial and should occupy
only a small area. The other two functions can be integrated and
implemented in a 10-input, 1-output PLA. Again, Espresso was used
to reduce the Boolean expression for this function; the reduced
expression is given in the appendix. A PLA implementation is
pictured in figure 4.18. It requires only 32 product lines. The
adders used for d';4 are quite simple since 4';; is a one-bit

number.

4.3.4 Packaging and Throughput

Each DTW cell requires the following functions:

One Mod 23 Subtractor-Squarer
One Mod 23 Adder

One Mod 11 Subtractor-Squarer
One Mod 11 Adder

One Quantizer

Two Minimum Computers

To obtain a crude estimate of the area of one DTW cell, PLAs
implementing the above functions are grouped in figure 4.19,

Table 4.1 summarizes the dimensions in terms of the feature size \.

The details of the required contrél circuitry and interconnections
as well as a few gates required for the mod 2 operations have not
been considered in this initial estimate. Assuming pessimistically
127
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PLAs for DIW Functions

Fiqgure 4,19.
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that this additional circuitry would represent 508 of the total
hardware, we estimate that the chip area for one DIW cell is
3,200,000)\2 (an 800\ * 4000\ rectangle) which in 4 um nMOS
technology represents 12.8 umz. It follows that in a 7 rm X 7 mm
chip four cells might be integrated. This is an upper bound an area
since, as shown in the appendix, a reduction of the area by a factor
of more than ten is likely if random logic is used and, as discussed
below, data would flow serially fram cell to cell, so that some of
the functions implemented here in PLAs could be simplified by using
combinational logic and making use of the serial data flow. This
would be especially important in the case of mod 23 functions
because the corresponding PLAs are relatively large. A coamparison
of the area of a PLA and a custom logic design of a mod 23 adder is

included in the appendix.

Table 4.1

PIA Dimensions for DIW Cell Functions

Mod 23 Subtractor-Squarer 3120 x 3290\

Mod 23 Adder 276\ x 20401

Mod 11 Subtractor-Squarer 209\ x 706\

Mod 11 Adder 209N x 724\

Quantizer 208\ x 296\

Mod 23 Minimum Computer 205A x 3172
131
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One advantage of systolic arrays is modularity, i.e., only one
cell needs to be designed with multiple cells repeated in one IC,.
A problem with two-dimensional arrays is the I/0 limitation. If an
N x N array of cells is to be incorporated in one package, 4MN I/0
leads are required. M is the number of leads connected to each side
of each cell, assuming, of course, that more than one IC is inter-

connected to form the complete system.

Standard IC packages come with 20, 40, 84, and 132 pins; the
latter two are pin grid arrays and the former two are dual in-line
packages. Based on the pessimistic area estimate given above, at

least four cells could be integrated in a 49 mm2

chip. If random
logic is used and the size of a cell is reduced so that 49 cells fit

in a chip, M is reduced to 4.

The I/0 limitation is important because the time required to
transmit one bit between chips in 3 um CMOS technology is about
100 ns. With a 12-pole model, 15 symbols must cross each side of
each systolic cell: 13 correlation symbols and 2 path cost symbols.
Since communication between residue channels is required, each cell
in the array should contain the hardware for all residues. With 23,
11, and 2 as moduli each symbol requires 10 bits for its representa-
tion so 150 bits must cross in each cell period through 4 leads.
This requires at least 3.75 us, which is longer than all the other
cell operations require., Hence, the time-warp rate of the systolic

array is estimated as 266 kHz., as limited by the communication

time. This rate can be increased at the expense of integrating

o fewer cells per chip.

vy
)
t~$ .
[}
::, .‘ 132

o, 0 Q04 0 C xx 4 OO T O ' e
ROV PO OO T e L (O . AN RS SRSV AY ROt AN
. 'g"""‘:‘,""-.':’;‘:::‘::E:::E .,:::s‘!:r::p::g::&:l"%ﬁ :.Q"ﬁ.:;;:c HIATASEE '} e ‘ ‘.Jsﬂ-‘:,.'»:c' ) e ..‘.;'5 Py o O
OAQ" LA ".l_“iw ) ) .‘ A ) \) '. (1 T S - AN . O 3¢ 3 . ) . 1, 8% ¥ A A () A 1,
Sl s ",*’.‘;:"‘ﬂ?f ¥ '.:A’.:'.::_'&"l. .?:"' 2 4 AN RN PaButie e ithatinints hnite e i ihhvte,

o
"




Lt 4.4 CONCLUSION

Two systolic architectures were introduced in this section, one
for camputing autocorrelation coefficients and the other for
performing DTW. Implementation in RNS was discussed, and trial PLA

> layouts were presented to estimate circuit complexity.

Qﬁ The camputationally intensive part of the speech recognition
P4t

%Q» system is the DIW, for which the corresponding systolic cell is

.‘;

s simple when implemented in RNS. It is estimated that 49 cells could

be custom-integrated into one chip, so for a 50 x 50 array about 50

R ICs would be required. All chips would be identical, since each one
h performs computation in all the residue channels. Alternatively,

gﬁ wafer-scale integration could be used for the entire array.

3%‘ The limiting factor in the speed of performance is the bit-

'33 serial transfer of information between two ICs, which, in 3 um CMOS

technology, can be done at a 10 MHz rate. Based on this rate, it is
estimated that one new comparison between a test and a reference
utterance can be done every 3,75 us. Wafer-scale integration could

LX) also speed up the process.
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SECTION 5

SUMMARY

Isolated word recognition is a computationally intensive
processing function. The combination of residue number system
computation and systolic array architectures offers practical
simplification in the design of a special-purpose hardware
processor. This report has described such an architecture; it uses
short-time correlation analysis to form the spectral patterns, a
distortion function employing squared Euclidean distance between the
normalized correlation values of the test and reference utterance
segments and a two-dimensional pipelined processor array to imple-
ment dynamic time-warping for pattern registration. With the
exception of the normalization of the sample correlation values, all
significant computations are carried out in a compact RNS for imple-
mentation in specially designed hardware of low complexity. This
combination of techniques provides for a very high processing
throughput in simple hardware that can be used for real-time word

recognition with a large vocabulary.

This architecture has evolved from a previous attempt at imple-
mentation that used precomputed LPC analysis of the reference seg-
ments with the calculation of the Itakura-Saito distortion between
the test and reference segments carried out in RNS. While the
distortion calculation seemed well-suited to RNS, requirements for
integer scaling of inverse correlation coefficients imposed an
impractical size on the integer ring containing the computation. 1In
the present method, we use the correlation values that determine a
12th-order LPC model, and, recognizing that the information requi-
site to predict the LPC model spectrum is contained entirely within
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at these samples, we employ a squared Euclidean distance computation
'Q%: that reduces the size of the integer ring. We have been able to
P reduce the required computational range from about 30 bits for the
Itakura-Saito distortion to about 9 bits for the squared Euclidean

I

v WX
1%%‘ distortion without experiencing any significant loss in g&g
X t
i discrimination ability. '?
ke

!‘F"'.c

An underlying premise for performing the DTW computation in

ifa RNS, since it requires decisions based on comparison of the magni-
B

SA tudes of cumulative local-distortion differences, is that these
R des of lative local-di ion diff is that th

“i: differences are small enough to be contained within the range of a

l single modulus. The local decisions can then be made within a

&
B2 finite field while the resulting least-cost path metric is accumula-
Y
:?A: ted in the full RNS. To contain the range of the local distortion

W 3
:h‘ differences, we quantized the distortion values to a smaller range.
GhH
In our architecture, this is done entirely in RNS by a partial
ne
%ﬁ mixed-radix conversion that establishes natural quantization bound-
gﬁk aries and is simple to implement with Boolean logic.
Y
o
We have described the processing algorithm, detailing the

ﬂ&f important steps; we have presented the results of extensive simula-

b
;us tions using selected system parameters; we have also described the

i
;ﬁf: design concept and operation of a two-dimensional pipelined array
LA 2

- that carries out both the local distortion computations and the DTW
124 path-metric computations in an RNS of moderate range. We made a
L4
LY % very rough estimate of the silicon area used and throughput attained
4
idﬁ from a hardware implementation in programmable logic arrays (PLAs)
Ny
ikt and exhibited some trial layouts for the reduced Boolean logic
‘a?, functions corresponding to functional components of the DTW array.
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while we would not advocate implementation in PLAs because of
the inefficient use of area, this artificial design exercise enabled
us to upper-bound the complexity of the processor. Our conclusion
is that the combination of RNS arithmetic calculating the squared
Euclidean distance and quantized shortest-path search, when imple-~
mented in a two-dimensional pipelined array provides an architecture
that is simple and practical, even if naively designed with PLAs.
The careful design of these functions using state-of-the-art custom
logic tools could provide an even simpler hardware implementation.
We conclude that the architecture described is a leading candidate
for VLSI implementation as a special-purpose hardware processor, a

task that should be undertaken in a follow-on effort.
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5 APPENDIX Q‘.:-
: -"w'{'. )
oy REDUCTION OF THE BOOLEAN EXPRESSIONS FOR DTW CELL FUNCTIONS : 7’3‘ 3
R
; The (modified) output of the U.C. Berkeley Boolean function ._:{,-{'-.
, reduction computer program ESPRESSO for the six functions discussed *':-‘:.
" in section 4 is listed in tables A.1 through A.6. il
: PN
y The input variables are called xg, Xj, ..., X,-1 and the out- J_.:\
j put variables yo, Y1, <.+, Yp-1- Consider the listing for the mod %f»}:-:
fo, 11 subtractor squarer. The first three lines indicate that there k“'
I are eight input and four output variables and 78 product terms. The .
:‘ rest of the printout consists of eight input and four output ’.":
.‘\‘.‘ columns. Each eight-bit input word represents a product term in a :‘E"
A Boolean sum-of-products expression. In each of the eight positions, L]
,~ a 1! means that the corresponding variable appears in the product By “
7_ term uncomplemented, a 0 means that it appears complemented and a - ::-f‘::-t
S"" means that it is absent. For example, a product term listed as &j;_(,,
o -1010000 stands for X]X)X3XuX5KgX7 . v
et _“‘
‘ The reduced sum-of-product expression corresponding to the , \,‘:
.‘. output variable y; contains the product terms from the rows where }‘ 2
" a 1 appears under the column for y;. For example, the first few ( (

terms for yo for the mod 11 subtractor-squarer are ’7’“"

:
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Table A.1

Mod 23 Subtractor - Squarer

r .1 10 .05 .p 384
y inputs x out y inputs x out y inputs x out y
K) 9876543210 43210 9876543210 43210 9876543210 43210
P 0000000110 01001 001100-010 10000 -111100000 10000
B 001010-001 10000 0-01000110 10000 001000-000 10000
R 0-00100101 10000 00000-1111 10000 0-00000100 10000
4 0001000-01 00001 00000001-1 00010 0010100-10 00001
s 001101-001 00100 1-00100110 00100 -101000001 00100
-110100010 00100 00010-1101 00100 -1-1100010 01000
o 00101-1110 00100 1-10000010 00010 000101-100 00010
Y 000010-000 00001 0-00000001 00001 00110-0011 01000
9 001010-100 00001 -001100110 01000 00011-0000 01000
-, 00-00-1101 01000 -000000011 01000 -001000101 01000
00101-0010 01000 00110-0001 00010 -011000101 00001
) 00100-0001 01000 00001-0010 00001 -000100100 01000
- -000100110 00010 00101-0110 00001 00101-0000 00010
y 000101-001 10010 1-00100010 10010 000011-000 10010
J 1-00000001 10010 0-11000000 01100 00110-1111 01100
! 00011-1001 00101 -110000011 01100 00001-1010 01100
3 -111000101 01100 -100100011 00101 00011-1100 01100
! -101100101 00101 00101-1011 00101 -100100000 01100
. 00000-1001 01100 000101-010 00011 -110100100 01100
N 1-10000000 01001 00110-1001 01001 -101000011 00011
K 000001-100 01001 00011-1010 00011 1-00000000 00011
‘8 00101-1000 01001 00110-1100 01001 -100100110 01001
h -011100001 01001 -110000110 01001 00110-1101 00011
Y -110100110 00011 00001-0111 01001 1--1000011 10000
000111--10 10000 00-011-100 10000 1-10000-01 10000
) 00-1100-01 00100 000-0000-1 00001 00-0100-11 00100
i 001-000-11 00001 00-11001-0 00001 000-100-00 00001
) 0001100--0 00001 0010000--1 00001 1-1001-000 10000
0010-1-000 00100 1-11-00010 01000 000-0-1011 00100
. 1-0001-100 10000 -1011000-0 00100 000101-11- 01000
) 1-1-100011 00010 0-110-1010 10000 -10100-110 10000
" -1111001-0 00100 -01110-011 10000 1-0-100001 00010
{. 0-101-1001 10000 001100--00 00100 0000-1-001 00001
K 1-0010000- 00001 -10010-101 10000 1-010000-0 00010
: 000111-1-1 00010 000001-00- 00001 0--0000110 00100
)
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inputs x
9876543210

00100-11-1
-10000-100
1-10-00100
000001-0-0
-101-00100
00010-1-11
-1000000-1
00100-10-1
00010-1-01
-11111-010
-1011-1000
1-010-1101
-1111-1100
-1100-1001
-1100-1111
-1001-1110
0-000-0111
-1000-0101
-0100-0111
-111-00011
1-00-00101
1-0000010-
-11000000-
000011-1-1
-1011-0011
-0111-1111
-0110-1110
-1001-0001
-1000-0000
0-0111-001
-1100-0100
1-0010-000
0-1001-010
1-1000-110
-11101-001
1-010-1111
1-001-1110
00-101-1-1
-1110-1000

‘ﬁ}v
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Table A.1

(Continued)

inputs x
9876543210

000011-0-1
0-011-0111
00010-100-
-100-00010
001Q0-101-
-1011001-0
-011-00000
-0111000-0
000-0-0111
00010--000
--00000010
--01000100
1-010-0001
-00111-100
1-100-0011
-1101-0000
-0000-1101
-0111-0100
0011-1-010
001011-00-
1-1-100001
0001--1110
1-1-100101
-0011-1011
001011-1-1
-1010-0010
-1110-0110
-0000-1000
-1101-0101
-0100-1100
1-1000-011
1-0100-100
0-1101-100
1-000-1010
1-0011-100
1-010-1011
-1111-1001
-1011-1110
-1101-1010

143

inputs x
9876543210

0-100-1000
001-0-1011
001001-10-
000-1-1000
-111100-10
001-1-1100
-1-0100010
-1100001-1
-1-0000101
-11011-010
00100--010
-1000-1011
-1110-1001
0-000-1110
-1001-1100
-0101-1010
-1010-0101
-1001-0100
1-0100011-
-11100001-
00011-111-
-110-00001
00001-110-
0000--1100
-0010-1010
-1111-0111
-0001-1001
-0101-1101
1-0100-001
1-0010-011
0-0011-010
0-0111-100
0-0001-001
1-1001-001
-10101-000
-1110-1011
1-1-100-10
-10011-000
-1010-1101




Table A.1 PR
; R
B .'.' #
. n
(Continued) R
Wy
; bl
g inputs x out y inputs x out y inputs x out y %:,«g
h 9876543210 43210 9876543210 43210 9876543210 43210 Sﬁﬁ'
' e R L !ﬁ'f‘: &
[} T t
) -1001-1111 01001 -11011-100 00011 -0111-1010 01001 -
§ 1--1100-00 10000 00-001--11 10000 -1010-0111 01001 o
‘ -1101-0111 01001 -0111-1110 00011 -1110-0111 00011 AR
‘ 1-11-1-010 10000 1-1-11-001 10000 1-0101-11- 10000 A
\ 1-0011-1-1 10000 1-11-00-01 00100 00-011-11- 00100 iy
: 1-1-100-00 00100 1--110001- 00001 -11101--10 10000 AR
00-1-1-000 01000 00-001-1-1 00100 1--1-00010 00001 —_
1-010-1-10 10000 001-01-11- 00010 0001-1--11 00001 fEtitins
' 00-101-11- 00001 -11011--01 10000 1-11-001-0 00010 Ty
] 1-001-1-01 10000 1-01-00-11 00010 1-11-00-10 00001 $$V&
» -1-1-00001 01000 -11001--00 10000 1-00000-1- 01000 ity
1-000-1-00 10000 00-01-111- 01000 0010-1--00 00010 s ey
-1-1000-00 01000 -1-1100-00 00010 1-1-1-1010 00100
00-00-1-11 00010 -1-111-001 00100 1-1-0-1000 00100 e
-10101-1-1 00100 1-11-1-001 00010 1--111-000 01000 Wit
-1-101-000 00100 1-1-11-000 00010 0-0111-01- 00010 e,
-01111-0-0 00100 1-01--0111 00100 1-0011-11- 00010 ot
-101-1-001 00001 1-0-0-0111 00100 -11111-11- 00001 Gl
1-1-10-110 00010 -11-11-000 00001 1-0001--11 01000 -
-1-111-010 00001 1-001-101- 00001 -10111-0-0 00010 i
-11001-01- 00001 --111-1011 10000 1-0001-1-1 00010 sy
i -11101-10- 00001 0-1101-1-1 00010 1-01--1100 00001 e
“ -1011--111 10000 1--110-100 00010 -11111-1-0 00010 e
; -1-101-100 01000 1-0-1-1100 00010 1-1000-10- 00010 PN
1-10--1110 00001 -11001-0-1 00010 1-000-10-1 00010 AN
1--01-1010 00010 1-000-11-1 00001 -11-1-1000 00010 .
L -1111-10-0 00010 -10101--01 00010 -10-0-1111 00010 BRILE
, 0-1001--11 00010 1-100-11-1 00010 1-000-011- 01000 0, N
1--00-1101 00001 -00001-11- 00001 -1000-111- 00001 H3M$
1-000-1-01 00001 -0-01-1011 01000 -0111-1101 01101 ;:ﬁﬁa
-1-01-0011 01000 -1000-11-1 00010 -1-11-0101 01000 AR
-0011-1-01 01000 -0-00-1010 01000 -1-00-0010 01000 _—
-0010-1-00 01000 -0100-1-10 01000 --1110-001 00100 Vi
--001-1111 00100 -1000--110 00100 --000-1110 00100 it
--111-1000 00001 -01111-11- 10010 1-11--0111 10010 Wik
1--110-010 01100 1-11-0-101 01100 1-1-10-100 01100 NN
1--110-101 01100 0-1011-11-~ 01100 1-1-11-010 01001 A
1-11-1-000 01001 0-0101--11 01100 0-1001-1-1 01100 S
-01111-01- 00110 0-1011--11 01100 1-10--1001 00110 N,
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Table A.1 (X
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k‘:!ffg.'
{Continued) by
;‘;i
inputs x out y inputs x out y inputs x out y e
9876543210 43210 9876543210 43210 9876543210 43210 ??
--------------------------------------------- W
1-0101-1-1 01001 1--11-1000 00110 -10011-10- 00110 Lo
-100-1-100 00110 1-1-1-1111 01001 -10001--11 00110 gkﬁ
1-11--1111 00011 -1-111--11 10000 1--11-1-11 10000 QM
1--111--01 00100 1-0-11-0-0 00001 1-0-01-0-1 00001 ﬁqi
1--011--11 00100 1--101--00 00100 1-1-11-1-0 00001 ,ﬁg
1-1-901-1-1 00001 1--001--10 00100 -111-1-1-1 00001 wh
1--11-110- 00001 1-1-1-1-00 01000 -1-11-1-01 00100 -
-11-01--11 00010 -10-1-10-0 00001 -110-1--11 00001 '_\!
-10-0-10-1 00001 -1-01-1-11 00100 1--11-11-0 00010 }j
-1-10-1-00 00100 -01111--0- 01000 -11-1-11-0 00001 s }
-11-0-11-1 00001 -1-00-1-10 00100 1--0--0111 01000 ‘hﬁ
1-100-1-0- 00010 -10-1-1-00 00001 -1100-1--1 00001 R
1-1-1--111 00100 --1111-1-1 00100 -1-01--111 00100
1-11--101- 00110 -101-1-11- 00110 1--111-11- 01001 é@?
1-11-1--11 01001 1-11--1-0- 01000 -1-0-1-11- 01000 %&:
et
s
o
X
e
Sotd,
i
) Q'i
.I...Q
X
XN
':T ¥ 6,
h i
.": ‘.'\;:‘
t
] 5?
‘S @‘l‘-‘:
e
GhY
a
145 e
ot
L‘ '

-«

.M. S

‘c. Y,

.'.I‘
N

oy d
v;"u‘ e,"w,l'n." t'o,"i," *’o " ) "'«!t‘;ft*

ro)
&’t‘



.1 10

inputs x

9876543210
1-0-000-00
000-01--00
---0000001
00-01--000
00001---00
00010--00-
000--0-100
001000-0--
001-0-100-
0000--11-0
00000-1---
0-01-0-000
0-00-0-010
0--00-1001
-1110-0001

-1101-0010

1--001-0-0
¢0-00-101-
-1-0-0000-
1-00-00-0-
00-0-1-00-
000-1--0-0
0000--1-0-
0--1-00-00
0--0-00-10
00-1-0011-
-011100--1
-1-11001-1
00-00--11-
-1110-1-10
--1-100000
-110--1101
00--1-1111
1--1--111-
-1-0--100-
0-0-0-10-1
-11-0-11-0
--1-0--000
--0-0--100

outputs y

43210

Table A.2

Mod 23 Adder

.0 5

inputs x

9876543210
00--01-000
1-00000--0
--00100-00
00-00--001
0001---000
--0000001-
0-1-00000-
0-10-000-0
000-0-110-
-1--0-1000
-1-00-10-0
0-0100-00-
0-0000-01-
00-11001-1
001-100-11
-1001-0110
-1100000--
-11-1-11-1
-100-00-0-
--0-1000-0
0000-1--0-
000-0--0-1
00-1-0--00
0--1000-0-
0--0000-1-
-10--00100
-111100--1
000001--1-
1----1-000
-1-10-1110
-111-1--1-
~1101-110-
00000--1-1
1--1--1-11
-100--1-0-
-111-00-1-
1--0-1-00-
-101-1-0-1
0011--1-1-

T POBC M BNONONOE Q)
'.'“s’,'u‘.‘ﬂ‘.“\:o‘.— 't".-‘c’,‘;"‘ 8 ,'i“' N
RO DO X

W el BontnY DA

R PRC) )

It
s .

outputs y

43210

.p 236

inputs x

9876543210
1--00000-0
00-001-0-0
--00000-01
--0100000-
--00-00010
0000---010
0-0-00010-
0-00-001-0
0010--10-0
-10-0-1-00
-1000-1--0
-1000-1-01
0--01-1000
0-001-1-00
-13210-0101
1-0-01--00
-1000001--
-1---00000
1--0-0000-
--0-0000-1
000---1-00
00-0--100-
00-100--0-
00-0-0--10
0011-00-1-
1--1-00000
001---1000
-11-100-11
00--1-0111
1-0001----
00-11-11-1
001-1-1-11
-1-111--1-
001--001--
0-0-1-10-0
-1-1-0011-
1-00-1--0-
-10111-0--
00-1--111-

BRGSO OONOONR 1Y

LA UL “HJ.'H ST O I A
,l,d“‘.lgu_,\" S O GAOAGR
. DO AR D X OO TN
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o K 1, Ve

outputs y
43210
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Table A.2

(Continued)
inputs x out inputs x out inputs x out
9876543210 43210 9876543210 43210 9876543210 43210
--100--0-0 00100 -10-11-01- 00100 --000--1-0 00100
1-01--10-1 00100 1-01-1-0-1 00100 1-0---1011 00100
1-0-1-101- 00100 1-0-11-01-~ 00100 -1--1-0111 10000
-0111-1--1 10000 -1-1-1-11- 01000 --1101--10 00001
-1-1-1--11 00010 1-11-1--1- 10000 1--1-1-11- 10000
1--10--110 00001 --1011-10- 00010 1-11--1-1- 01000
1-10---101 00010 -1111-1--1 00001 1--11-1-1- 00010
-1-11-11-1 00001 -111--11-1 00100 -1111-11-- 00100
1--1-1--11 00010 1--111--1- 00010 -11-1-1-11 00001
-1--1-1111 00001 -11---1111 00100 -11-1-111- 00100
,-111--1-11 00010 --1111-1-1- 00010 -1-1--1111 00010
-1-11-111- 00010 '--1-11-1-1 00001 1-1-1--1-1 00001
-10--000-- 01000 1-0--000-- 10000 000--1-0-- 10000
00--10---0 00001 00--00---1 00001 ¢00---10-- 01000
0---100--0 00001 0---000--1 00001 -11--001-- 10000
-1-0-1--01 00010 -1-011--0- 00010 001---11-- 10000
1--0--1-01 00010 1--01-1-0- 00010 1--0-1--01 00010
1--011--0- 00010 -10--1--11 00100 --1-01-1-0 00001
1-1-0--1-0 00001 1--11-10-- 00100 1--111-0-- 00100
1-0--1--11 00100 -11111---- 01000 -1-111-1-- 01000
-11--1--11 01000 1-11-1---1 10000 1--1-1-1-1 10000
1--111-1-- 10000 --011--0-1 00100 ---101-11- 00001
1-1--1--11 10000 1-1-11--1- 10000 1---11-11- 10000
1-11--1--1 01000 ~--0-1--011 00100 --10-1-1-1 00010
1--1--11-1 01000 1--11-11-- 01000 1-11----10 00001
1-1---1-11 01000 1-1-1-1-1- 01000 1-1-1--10- 00010
1----- 1111 01000 1---1-111- 01000 --1111---1 00001
---111-1-1 00001 --11-1-1-1 00100 --1111-1-- 00100
--1-11--11 00001 1--11--1-1 00001 1-11---1-1 00100
--1-11-11- 00100 1-1-1---11 00001 --11-1--11 00010
--1111--1- 00010 1---1--111 00001 ---111-11- 00010
1-1----111 00100 1-1-1--11- 00100 1-11----11 00010
1--1---111 00010 1--11--11- 00010 --111--1-1 00100
--1-1--111 00100 -1--01---0 00001 -10---10-- 10000
1---0-1--0 00001 1---01---0 00001 1-0--1-0-- 01000
---10---00 00010 ---00---10 00010 --10---00- 00100
--00---10- 00100 -1--11---1 00001 -11--1-1-- 01000
---01---01 00010 1---1-1--1 00001 1---11---1 00001
1-1--1-1--.10000 1-1---11-- 01000 --01---01- 00100
---11---11 00010 --11---11- 00100 :
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inputs x
76543210

-1010000
0010-111
-1010010
0000-011
00100-00
00001-00
1-1-0010
-100-111
-0110-01
-1000-10
-11-0001
-110000-
-1011-00
-1111-1-
1--1-110
00-01--1
1-1-1-00
-000-100
-110-010
-1101--0
1-0--011
-1001--1
1--11--0
1-1-0--0
---10-10
0-10---1

Table A.3

Mod 11 Subtractor - Squarer

out y
3210

0010
0010
1000
1000
0100
1001
1000
1000
0100
0100
0011
0011
1001
1000
1000
0100
0100
0101
0101
0100
0011
0011
0001
0001
0001
0001

.0 4

inputs x
76543210

0000-101
0001-100
0010-101
-11100Q0
0-000010
00011-00
00101-1-
-011-110
0-01-011
001-1-00
0001-11-
1--10001
1-00-101
00-11-1-
-1101--1
-101-001
1-001-1-
-111-011
-010-110
--11-101
-0111-0-
1--1-1-1
1--01--1
0--10--0
1-1--10-
---0--11

148

.p 78

inputs x
76543210

-1110010
-1000001
-0110000
0000-111
1-000000
1-000001
-111-100
-110-011
0-10-100
1-00001-
000--110
00011--1
1-1--111
1-1-00-1
1--100-0
-001-101
-100-000
-011-111
1-00-1-0
-101--11
1--1-100
-1-11--1
0--01-1-
0--00--1
-10-1-1-
--11---0
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inputs x
76543210

1-0000-0
0001--00
000--110
1---0000
0000---1
---10000
0-000-01
0000--1-
-110-001
-110-110
1-0-000-
000--10-
0--100-0
001--11-
-11-1-1-
-1-11--1
-11--111
-111-1-1
-1-01--0
-10-1--1
1-1-1-1-
--10--00
1----111
1-1--1-1
--111-1-
1--1--11
--11--11

h n”.';"‘

outputs y
3210

1000
0001
0110
1000
0001
0001
0001
0010
0100
0001
1000
0100
0001
1000
0100
0001
0010
0001
0001
0010
1000
0010
0100
0100
0010
0001
0010

Vad wgton alw

Table

A.4

Mod 11 Adder

.0 4

inputs x
76543210

00-01-00
0-0-0010
0010-10-
-100-1-0
-1-0-100
00---100
0-010-00
00-1-111
-01100-1
-100001-
000-1-0-
0--000-1
00-10--0
-1011-0-
1-0--101
1-1--11-
-111-11-
1-001--0
-10--10-
1--11-1-
1--1-10-
-1111---
1--1-11-
1-1---10
1-1---11
1-0-1--1

149
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.p 79

inputs x
76543210

--000001
0-10000-
c0001---
001-001-
0000-1--
-11100-1
-01-0-00
-101-010
00-1-011
-11-0000
-10-000-
00-00--1
-11-001-
-1-1-011
-011-1-1
1--1-1-1
-1-1-111
1-1-1-00
1--0-1-0
1-1-1--1
--00--10
1--11--1
--101-1-
--01--01
--111--1
1--11-0-

outputs y
3210

0001
0010
1000
0100
0100
1000
0010
0100
0100
0110
0100
0001
1000
1000
1000
0001
0001
0101
0001
1000
0010
0001
0001
0010
0001
0110




.1 10

inputs x
9876543210

0---0-1111
0-0-0-1-11
00--0--111
1-11-0-0-0
1----00-00
-0100-01-1
1--1-00--0
0-0---11--
000----1--
-1111-00--
-111--00-0

1 O

O

Table A.5

Quantizer

.01

inputs x
9876543210

0-0-0-1-11
0-000-1--1
1-11-0-00-
0--0--111-
1--1-00-0-
1---100-0-
1--1100---
-010--011-
1-1--00---
00----1---
-11-1-000-

150

1 O

P

.p 32

inputs x
9876543210

0--00-11-1
1-1--0-000
1-1-10-00-
0-00--1-1-
-00-0-0011
-0000-00-1
--0--1-1--
-000--001-
0----1----
-111--000-
-11---0000
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v Table A.6

o

o

: Mod 23 Minimum Computer

v

ty .1 10 .01 .p 26

F; N

l inputs x Yy inputs x Yy inputs x Yy

oy 9876543210 O 9876543210 0 9876543210 0

¢, S e e O -

P
Py ]

! --111-0--- 1 -0--11--1- 1 0--111---- 1

0---1-110- 1 ---0---11- 1 1-0-0---0- 1
--0-1-1-1- 1 1--1--01-- 1 -0--01--0- 1

. 0---0-1-1- 1 --0-1-010- 1 -1--00--0- 1

' -1--10--1- 1 0-1--1----1 -0-110--0- 1
b 0--10--0-- 1 1-1---1---1 --0-0-0-1- 1 3
K~ ---01--00- 1 1--0-00--- 1 0-0---1---1 5
Wy ---00--1-- 1 ---1---01- 1 001---0--- 1 o
W ----1----0 1 ----0----11
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Section 4 discussed PLA implementation of the reduced functions
of tables A.1 through A.6. Considerable reduction in the hardware
is possible if random logic is used instead. To illustrate, figure
A.1 shows a mod 23 adder layout obtained with special purpose CAD
tools that were developed by MITRE's integrated electronics project
staff. The silicon area required by the adder is 228\ x 133A which
is more than 20 times smaller than the area of the PLA given in
section 4. Similar reduction can probably be obtained with the
other DTW cell functions, so the estimate of the area of one cell

given in section 4 is quite pessimistic.

133 —t

R Figure A.1. Mod 23 Adder e
. 8 LS
0 ]
] p." .'h' v
(> !'.:' :
KA )
o bl
b ;::q-
i) 152 it
A‘g". ‘:‘\‘ :;'\

u :* l‘) W :l‘,.l"' :l. .o‘i
R *«' h‘ : & :::t

1 \

S n*v.nl f -‘.') .,-q ~ L .\-. R I AL

""r’ $-\. A -;C\. \ $-.j; _,‘ o $ ((-\ : :1 21 -..»,_,4-‘ o SR N N T
1 .C ' e, - - y W " “e

-h‘i i' "»hw‘nlu R Unety e

1

u l‘,! !q 4’,1‘,”1',;“

L { &' U\



s .»' ‘!“ ‘3, .’,',.'.'.‘. ‘.
' 6 BN ’ ‘

o V . “| t ‘1.5‘%‘.5 ”
Y

Table A.7 shows a two-input gate count of a combinational logic

(sum-of-products) implementation of the six expressions.

Table A.7

Number of Two-Input Gates Required by a Sum-of-Products
Implementation of the DTW Cell Functions of Table 4.1

Function Inverters ANDs ORs
Mod 23 Subtractor-Squarer 10 2945 510
Mod 23 Adder 10 1360 248
Mod 11 Subtractor-Squarer 8 437 105
Mod 11 Adder 8 385 86
Quantizer 10 96 25
Mod 23 Minimum Computer 10 LA 31
Total 5394 1005
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MISSION
of

Rome Air Development Center

RADC plans and executes nresearch, development, test
and selected acquisition programs in support of
Command, Controf, Commundications and Intelligence
(C31) activities. Technical and engineening
support within aneas of competence 445 provided %o
ESD Program Ofgices (PUs] and othen ESU elements
to pernform effective acquisition of C31 systems.
The aneas o0f technical competence include
communications, command and control, battle
management, 4Anformation processing, Aurvedlllance
sensons, intelLligence data collection and handling,
sclid state scdences, electromagnetics, and
propagation, and electrondic, maintainability,

and compatibility.
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